Multiple Target Tracking Using Ant Colony Optimization and Artificial Neural Network
Abstract
visibility and placed new ants initial position at the second cycle and furthermore on the point of the second visit of the previous cycle of ants.
Full Text:
PDFReferences
Kammerdiner A.R., P.A. Krokhmal, P.M. Pardalos, Characteristics of the Distribution of Hamming Distance Values Between Multidimensional Assignment Problem Solutions, LNCIS 369, pp. 339-352, Spinger-Verlag, Berlin Heidelberg, 2007.
Chen G., L. Hong, A Genetic Algorithm based Multidimensional Data Association Algorithm for Multi-sensor Multi-target Tracking, Pergamon, Mathl. Comput. Modelling Vol. 26, No. 4: 57-69, 1997
Turkmen, I., K. Guney, Genetic tracker with adaptive neuro-fuzzy inference system for multiple target tracking, ScienceDirect, Expert System with Applications ,35, 1657-1667, 2008.
Turkmen, I., K. Guney, Tabu searh tracker with adaptive neuro-fuzzy inference system for multiple target tracking, Progress In Electromagnetics Research, PIER ,65, 169-185, 2006.
Bonabeau, E., M. Dorigo, G. Theraulaz, Swarm Intelligence: from natural to artificial systems, New York, Oxford University Press, 1999.
Grewal, M.S., A.P. Andrews, Kalman Filtering,Theory and Practice Using MATLAB, New Jersey, John Wiley & Sons Inc., 2008.
Krose B., P. van der Smagt, An Introduction to Neural Networks,The University of Amsterdam , 1996.
Stimson, G.W., Introduction to Airborne Radar,2nd Ed., New York, Scitech Publishing Inc., 1998.
Popp R.L., K.R. Pattipati, Y. Bar-Shalom, m-Best S-D Assignment Algorithm with Application to Multitarget Tracking, IEEE Transactions on Aerospace and Electronic Systems Vol. 37, No. 1: 22-39, 2001.
Vaidehi, V., N. Chitra, M. Chokkalingam, C.N. Krishnan, Neural network aided Kalman filtering for multitarget tracking applications, Pergamon, Computer and Electrical Engineering 27, pp. 217-228, 2001.
DOI: http://dx.doi.org/10.21535%2FProICIUS.2010.v6.522
Refbacks
- There are currently no refbacks.