Open Access Open Access  Restricted Access Subscription Access

Development of Circularly Polarized Synthetic Aperture Radar Onboard Unmanned Aerial Vehicle (CP-SAR UAV)

Josaphat Tetuko Sri Sumantyo

Abstract


Synthetic Aperture Radar (SAR) is well-known as a multi-purpose sensor that can be operated in all-weather and day-night time. Recently, many missions of SAR sensors are operated in linear polarization with high power, sensitive to Faraday rotation effect etc. This paper discusses the theoretical design of novel Circularly Polarized Synthetic Aperture Radar onboard Unmanned Aerial Vehicle (UAV CP-SAR) to retrieve the physical information of Earth surface for Earth diagnosis mission. The CP-SAR system is considered as small, light in weight and low power consumption system. The CP-SAR sensor is employing the elliptical wave propagation and scattering phenomenon by radiating and receiving the elliptically polarized wave, including the special polarization as circular and linear polarizations.

Full Text:

PDF

References


J.T. Sri Sumantyo, H. Wakabayashi, A. Iwasaki, F. Takahashi, H. Ohmae, H. Watanabe, R. Tateishi, F. Nishio, M. Baharuddin, and P. Rizki Akbar, 2009, Development of circularly polarized synthetic aperture radar onboard microsatellite, in: Proceedings of the Progress in Electromagnetics Research Symposium (PIERS), pp. 382 – 385.

E.J.M. Rignot, 2000, Effect of Faraday rotation on L-band interferometric and polarimetric synthetic-aperture radar data, IEEE Transactions

on Geoscience Remote Sensing 38, 383-390.

P. C. Dubois-Fernandez, J.-C. Souyris, S. Angelliaume and F. Garestier, 2008, The compact polarimetry alternative for spaceborne SAR at low frequency, IEEE Transactions on Geoscience Remote Sensing, 46, 3208-3222.

P.A. Wright, S. Quegan, N.S. Wheadon, C.D. Hall, 2003, Faraday rotation effects on L-band spaceborne SAR data, IEEE Transactions on

Geoscience Remote Sensing 41, 2735-2744.

A. Freeman, 2003, Faraday rotation and interferometric/ polarimetric SAR, ASAR Workshop, 2003. Available from http://trsnew.jpl.nasa.gov/dspace/bitstream/2014/7609/1/03-1625.pdf.

F.J. Meyer and J.B. Nicoll, 2008, Prediction, detection, and correction of Faraday rotation in full-polarimetric L-band SAR data, IEEE Transactions on Geoscience Remote Sensing 46, 3076-3086.

International Telecommunication Union, 2002, Handbook on Satellite Communications, third ed., Wiley-Interscience, USA, pp. 96-97.

R. K. Raney, 2007, Hybrid-polarity SAR architecture, IEEE Transactions on Geoscience and Remote Sensing 45, 3397-3404.

P. Rizki Akbar, J.T. Sri Sumantyo, H. Kuze, 2009, A novel circularly polarized synthetic aperture radar (CP-SAR) onboard spaceborne platform,

International Journal of Remote Sensing 31, 1053-1060.

M. Baharuddin, P. Rizki Akbar, J. Tetuko S.S and H. Kuze, 2010, Development of circularly polarized synthetic aperture radar sensor mounted on unmanned aerial vehicle, Jurnal Otomasi, Kontrol & Instrumentasi (Journal of Automation, Control and Instrumentation) 1, 1-6.

Yohandri, V. Wissan, I. Firmansyah, P. Rizki Akbar, J.T. Sri Sumantyo and H. Kuze, 2011, Development of circularly polarized array antenna for synthetic aperture radar sensor installed on UAV, Journal of Progress In

Electromagnetic Research C 19, 119-133.

W.L. Stutzman, 1993, Polarization in Electromagnetic System, Artech House, USA.

G.W. Stimson, 1998, Introduction to Airborne Radar, second ed., SciTech Publishing Inc., USA.

A. Freeman, W.T.K. Johnson, B. Huneycutt, R. Jordan, S. Hensley, P. Siqueira and J. Curlander, 2000, The “myth” of the minimum SAR antenna

area constraint, IEEE Transactions on Geoscience and Remote Sensing 38, 320-324.

K. Tomiyasu, 1978, Tutorial review of Synthetic-Aperture Radar (SAR) with applications to imaging of the ocean surface, in: Proceedings of the IEEE, pp. 563-583.

I.G. Cumming and F.H. Wong, 2005, Digital Processing of Synthetic Aperture Radar Data, Artech House, USA.

Y.K. Chan, V.C. Koo, T.S. Lim, T.S, 2007, Conceptual design of a high resolution, low cost X-band airborne synthetic aperture radar system, Progress in Electromagnetic Research 3, 943-947.




DOI: http://dx.doi.org/10.21535%2FProICIUS.2011.v7.395

Refbacks

  • There are currently no refbacks.