Open Access Open Access  Restricted Access Subscription Access

Innovations in Space-Based Interference Monitoring: The Role of Nanosatellites

Meiditomo Sutyarjoko, Adhi Murbini, Ary Setijadi Prihatmanto, Ishaq Handriansyah, Agus Budiyono

Abstract


The rapid proliferation of wireless technologies and the increasing demand for spectrum resources have made the monitoring and mitigation of radio frequency interference (RFI) an imperative for modern communication systems. This paper presents a comprehensive exploration of the evolving role of nanosatellites in interference monitoring, highlighting their critical contributions to signal intelligence and spectrum security. Nanosatellites, characterized by their compact size and cost-effectiveness, have emerged as an innovative solution for RFI detection and geolocation. We delve into the technology that empowers these small satellites, discussing their specialized payloads, data collection methods, and signal intelligence techniques. Emphasizing their pivotal role in spectrum surveillance, we elucidate how nanosatellites contribute to the identification and geolocation of interference sources. Through an array of practical use cases and case studies, we illustrate the effectiveness of nanosatellites in real-world interference monitoring scenarios, shedding light on their applications in satellite communication protection, terrestrial wireless network integrity, and efficient spectrum management. This paper also examines the advantages and challenges associated with nanosatellites, underscores their significance in maintaining regulatory compliance, and explores the promising future developments that are set to further elevate their role in interference monitoring. The findings of this paper underscore the transformative potential of nanosatellites in safeguarding the electromagnetic spectrum and enhancing the field of signal intelligence, making them indispensable tools in the modern landscape of interference monitoring.

Keywords


nanosatellite, signal intelligence, interference monitoring.

Full Text:

PDF

References


Barnhart, D. J., Vladimirova, T., Baker, A. M., & Sweeting, M. N. (2009). A low-cost femtosatellite to enable distributed space missions. Acta Astronautica, 64(11–12), 1123–1143.

Batista, C. L. G., Weller, A. C., Martins, E., & Mattiello-Francisco, F. (2019). Towards increasing nanosatellite subsystem robustness. Acta Astronautica, 156, 187–196.

Biersteker, S. (2016). A Nanosatellite Mission for Ionospheric Disturbance Monitoring: Mission Design and Payload Description.

Bouwmeester, J., & Guo, J. (2010). Survey of worldwide pico-and nanosatellite missions, distributions and subsystem technology. Acta Astronautica, 67(7–8), 854–862.

Brodecki, M., & Groot, Z. de. (2018). SIGINT: The Mission CubeSats are Made For.

Cristea, O., Dolea, P., & Dascăl, P. V. (2009). S-band ground station prototype for low-earth orbit nanosatellite missions. Telecomunicaţii, 52(1), 64–71.

Danish, M. N. (n.d.). SMALL SATELLITE: MILITARY APPLICATIONS.

Feruglio, L., & Corpino, S. (2017). Neural networks to increase the autonomy of interplanetary nanosatellite missions. Robotics and Autonomous Systems, 93, 52–60.

Hao, J., Yang, H., Zeng, C., & Yang, D. (2020). Research on construction of batch intelligent production line for micro/nano satellite. Signal and Information Processing, Networking and Computers: Proceedings of the 6th International Conference on Signal and Information Processing, Networking and Computers (ICSINC), 226–236.

Huang, P. M., Knuth, A. A., & Garrison-Darrin, M. A. (2012). Utilizing low-cost 3U single-sensor satellites for intelligence, surveillance, and reconnaissance mission capabilities. Sensors and Systems for Space Applications V, 8385, 113–120.

Inamori, T., Sako, N., & Nakasuka, S. (2011). Magnetic dipole moment estimation and compensation for an accurate attitude control in nano-satellite missions. Acta Astronautica, 68(11–12), 2038–2046.

Ketsdever, A. D., Lee, R. H., & Lilly, T. C. (2005). Performance testing of a microfabricated propulsion system for nanosatellite applications. Journal of Micromechanics and Microengineering, 15(12), 2254.

Krakos, A., Śniadek, P., Jurga, M., Białas, M., Kaczmarek-Pieńczewska, A., Matkowski, K., Walczak, R., & Dziuban, J. (2022). Lab-on-Chip Culturing System for Fungi—Towards Nanosatellite Missions. Applied Sciences, 12(20), 10627.

Leppinen, H., Kestilä, A., Pihajoki, P., Jokelainen, J., & Haunia, T. (2014). On-board data handling for ambitious nanosatellite missions using automotive-grade lockstep microcontrollers. Small Satellites Systems and Services-The 4S Symposium, 1, 1–10.

Lucia, B., Denby, B., Manchester, Z., Desai, H., Ruppel, E., & Colin, A. (2021). Computational nanosatellite constellations: Opportunities and challenges. GetMobile: Mobile Computing and Communications, 25(1), 16–23.

Miranda, D. J. F., Ferreira, M., Kucinskis, F., & McComas, D. (2019). A comparative survey on flight software frameworks for ‘new space’nanosatellite missions. Journal of Aerospace Technology and Management, 11, e4619.

Nagappa, R. (2015). The Promise of Small Satellites for National Security (NIAS Report No. R33-2015).

Pablo, H., Whittaker, G., Popowicz, A., Mochnacki, S., Kuschnig, R., Grant, C., Moffat, A., Rucinski, S., Matthews, J., Schwarzenberg-Czerny, A., & others. (2016). The BRITE Constellation Nanosatellite mission: Testing, commissioning, and operations. Publications of the Astronomical Society of the Pacific, 128(970), 125001.

Pawlitzki, A., & Steinmetz, F. (2021). multiMIND–high performance processing system for robust newspace payloads. Proc. Eur. Workshop-Board Data Process.(OBDP).

Perez, F., Modenini, D., Vázquez, A., Aguado, F., Tubı́o, R., Dolgos, G., Tortora, P., Gonzalez, A., Manghi, R. L., Zannoni, M., & others. (2018). DustCube, a nanosatellite mission to binary asteroid 65803 Didymos as part of the ESA AIM mission. Advances in Space Research, 62(12), 3335–3356.

Ponsford, A., D’Souza, I. A., & Kirubarajan, T. (2009). Surveillance of the 200 nautical mile EEZ using HFSWR in association with a spaced-based AIS interceptor. 2009 IEEE Conference on Technologies for Homeland Security, 87–92.

Popowicz, A. (2016). Image processing in the BRITE nano-satellite mission. Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 9904, 602–608.

Rigo, C. A., Seman, L. O., Camponogara, E., Morsch Filho, E., & Bezerra, E. A. (2021). A nanosatellite task scheduling framework to improve mission value using fuzzy constraints. Expert Systems with Applications, 175, 114784.

Tuli, T. S., Orr, N. G., & Zee, R. E. (2006). Low cost ground station design for nanosatellite missions. Proceedings of AMSAT Symposium.

Weidmann, D., Hoffmann, A., Macleod, N., Middleton, K., Kurtz, J., Barraclough, S., & Griffin, D. (2017). The methane isotopologues by solar occultation (miso) nanosatellite mission: spectral channel optimization and early performance analysis. Remote Sensing, 9(10), 1073.

Williams, E., Bridges, C., & Bowyer, M. (2018). Nowhere to hide? Passive, non-cooperative maritime surveillance from a nanosat. 2018 IEEE Aerospace Conference, 1–10.


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.