

Numerical Study on the Effects of Corrugation of the Gliding Dragonfly Wing
Abstract
References
Azuma, A and Okuno, Y. (1987), Flight in samara, Alsomitra macrocarpa.
J. thero. Biol. 129, 263~274.
Azuma, A and Watanabe, T. (1988), Flight performance of a dragonfly. J. exp. Biol, 137, 221~252.
Azuma, A and Yasuda, K. (1989), Flight performance of rotary seeds. J. thero. Biol. 138, 23~54.
Buckholz, R. H. (1986). The Functional Role of Wing Corrugation in Living Systems. J. Fluids Engineering, 108, 93~97.
Casey, T. M. (1976), Flight energetics in sphinx moths: heat production and heat loss in Hyles lineata during free flight. J. exp. Biol, 64, 545~560.
Church, N. S. (1960) Heat loss and the body temperature of flying insects. II Heat conduction within the body and its loss by radiation and convection. J. exp. Biol, 37, 186~212.
Dickinson, M. H. and Farley, C. T., Full R. J. R. Koehl, M. A. R., Kram, R. and Lehman, S. (2000). How Animals Move: Integrative View. Science, 228, 100~106.
Dudley, R. and Ellington, C. P. (1990). Mechanics of forward flight in bumblebees. II. Quasi-steady lift and power requirements, J. exp. Biol, 148, 53~88.
Jensen, M. (1956), Biology and physics of locust flight. III. The aerodynamics of locust flight. Phil. Trans. R. Soc. Lond. B, 239, 511~552.
Kesel, A. B. (2000). Aerodynamic Characteristics of Dragonfly Wing Sections Compared with Technical Aerofoils. J. Exp. Biol., 203, 3125~3135.
Kesel, A. B., Philippi, U. and Nachtigall, W. (1998). Biomechanical aspects of insect wings – an analysis using the finite element method. Comp. Biol. Med. 28, 423-437.
Liu, H. and Kawachi, K. (1998) A Numerical Study of Insect Flight. J Comp. Phys, 146, 124~156.
Lentink, D. and Gerritsma, M. (2003). Influence of Airfoil Shape on Performance in Insect Flight. 33rd AIAA Fluid Dynamics Conference and Exhibit, 1~17.
May, M. L. (1995). Dependence of flight behavior an dheat production on air temperature in the green darner dragonfly, Anax junius (Odana:Aeshnidae). J. exp. Biol, 198, 2385~2392.
Newman, B. G., Savage, S. B. and Schouella, D. (1977). Model test on
a wing section of a dragonfly. In Scale Effects in Animal Locomotion (ed. T. J. Pedley), 445~477. London: Academic Press.
Newman, D. J. S. and Wootton, R. J. (1986). An approach to the mechanics of pleating in dragonfly wings. J. exp. Biol, 125, 361~372.
Okamoto, M., Yasuda, K. and Azuma, A, (1996). Aerodynamic characteristics of the wings and body of a dragonfly. J. exp. Biol., 99,
~294.
Ramamurti, R. and Sandberg, W. C. (2007). A computational inverstigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. J. exp. Biol, 210, 881~896.
Rees, C. J. C. (1975). Form and function in corrugated insect wings.
, 281~294.
Vogel, S. (1967). Flight in Drosophila. III. Aerodynamic characteristics
of fly wings and wing models. J. exp. Biol, 46, 431~443.
Wang, Z. J. (2004). The role of drag in insect hovering, J. exp. Biol,
, 4147~4155.
Wakeling, J. M. and Ellington, C. P. (1997a). Dragon flight. I. Gliding
flight and steady-state aerodynamic forces. J. exp. Biol., 200, 543~556.
Wakeling, J. M. and Ellington, C. P. (1997b). Dragon flight. II. Velocities,
acceleration and kinematics of flapping flight. J. exp. Biol., 200, 557~582.
Wakeling, J. M. and Ellington, C. P. (1997). Dragon flight. III. Lift and
power requirements. J. exp. Biol., 200, 583~600.
Weis-Fogh, T., (1973). Quick Estimates of Flight Fitness in Hovering
Animals, including Novel Mechanisms for Lift Productioin. J. exp. Biol., 59, 169~230.
Willmott, A. P. (1995). The mechanism of hawkmoth flight. PhD
theses, CambridgeUniversity.
Wootton, R. J. (1992). Functional morphology of insect wings. Annu.
Rev. Ent. 37, 113~140.
DOI: http://dx.doi.org/10.21535%2FProICIUS.2008.v4.849
Refbacks
- There are currently no refbacks.