Open Access Open Access  Restricted Access Subscription Access

Electroconvective Instability and Overlimiting Current in Electrodialysis Cell

Van Sang Pham, Kian Meng Lim

Abstract


In this paper, we present a numerical study on electroconvection instability in an electrodialysis (ED) cell. The study is based on the full, coupled solution of the Poisson-Nernst-Planck-Navier-Stokes equations. A key finding obtained from the study is a new form of electroconvection instability occurring at perm-selective membrane surface in the ED cell. The instability is characterized by a series of unidirectional vortices. The vortices mix the diffusion layer in the ED cell and transport more ions to the membrane to produce an overlimiting current. It is found that the pressure-driven flow in the ED cell pushes vortices and depletion zones resulting from the instability along the membrane surface. The propagation of the depletion zones provides an explanation for the oscillating current observed experimentally in the over-limiting current mode. Our findings are in agreement with experimental results from the same group.

Full Text:

PDF

References


R. F. Probstein, Physicochemical Hydrodynamics: An Introduction (Wiley-Interscience, New York, 2003), 2 edn.

C. R. Martin, and Z. S. Siwy, Science 317, 331 (2007).

S. J. Kim, Y. A. Song, and J. Han, Chem. Soc. Rev. 39, 912 (2010).

V. V. Nikonenko, N. D. Pismenskaya, E. I. Belova, P. Sistat, P. Huguet,

G. Pourcelly, and C. Larchet, Adv. Colloid Interface Sci. 160, 101

(2010).

I. Rubinstein, E. Staude, and O. Kedem, Desalination 69, 101 (1988).

I. Rubinstein, and B. Zaltzman, Phys Rev E 62, 2238 (2000).

S. J. Kim, Y. C. Wang, J. H. Lee, H. Jang, and J. Han, Phys. Rev. Lett. 99, (2007).

S. M. Rubinstein, G. Manukyan, A. Staicu, I. Rubinstein, B. Zaltzman,

R. G. H. Lammertink, F. Mugele, and M. Wessling, Phys. Rev. Lett. 101, (2008).

I. Rubinstein, Phys Fluids a-Fluid 3, 2301 (1991).

T. Pundik, I. Rubinstein, and B. Zaltzman, Phys Rev E 72, (2005).

G. Yossifon, and H. C. Chang, Phys Rev Lett 101, (2008).

E. V. Dydek, B. Zaltzman, I. Rubinstein, D. S. Deng, A. Mani, and M.

Z. Bazant, Phys Rev Lett 107, (2011).

Ferziger, J. H.; Peric, M.; “Computational Methods for Fluid Dynamics,” Springer, 3rd Ed., 2001.

R. Kwak, G. Guo, W. K. Peng, and J. Han, (submitted).

Darwish, M.; Sraj, I.; Moufalled, F.; “A coupled finite volume solver for

the solution of incompressible flows on unstructured grids,” J. Comp. Phys. , 288 (2009) 180-201

Patankar, S.V.; Spalding, D.B.; “A Calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J.

Heat Mass Transfer, vol. 15, pp. 1787-1806, (1972).

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik,

M. Knepley, L. Curfman McInnes, B. Smith, and H. Zhang Mathematics

and Computer Science Division,

C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite

element mesh generator with built-in pre- and post-processing facilities.

International Journal for Numerical Methods in Engineering, Volume

, Issue 11, pages 1309-1331, 2009

I. Rubinstein, and B. Zaltzman, Russ. J. Electrochemistry, Vol 38, No. 8, (2002), 853-863.

S. J. Kim, S. H. Ko, K. H. Kang, and J. Han, Nature Nanotechnology 5,

(2010).

Dukhin, S. S.; “Electrokinetic Phenomena of the second kind and their

applications,” Adv. Colloid Interface Sci. 35, 173 (1991).

Rubinstein, I. & Zaltzman, B.; “Electroosmotic slip of the second kind

an instability in concentration polarization at electrodialysis membrane,”

Mathematical models and methods in applied sciences. 6, 623(1996)

(Math. Models Meth. Appl. Sci.)

P. V. Sang, and J. Han, (submitted).

V. G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, New

York, 1962).




DOI: http://dx.doi.org/10.21535%2FProICIUS.2012.v8.831

Refbacks

  • There are currently no refbacks.