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Abstract—The state estimation of Unmanned Aerial Vehicles
(UAVs) is crucial to control their orientation and navigation. The
ability of an unmanned autonomous helicopter to hover enables one to
operate in areas inaccessible or hazardous to other vehicles. In order to
achieve stable hovering at a particular attitude and height, accurate
estimations of orientation and position are essential. This paper
presents the research activity taken up at 11T Kanpur on the position
estimation of an autonomous mini-helicopter. A study was conducted
on the calibration of the onboard Inertial Measurement Unit (IMU) and
its data was used to estimate position. The next step is aimed at
integrating Global Positioning System (GPS) with the IMU to obtain
more accurate/reliable data by implementing Kalman filtering.

Keywords—Autonomous mini-helicopter, position estimation,
IMU, GPS, Kalman filter.

NOMENCLATURE
UAV = Unmanned Air Vehicle
IMU = Inertial Measurement Unit
GPS = Global Positioning System
XYZ = ground-fixed reference frame
dy = linear acceleration of helicopter with respect to the
ground
d;yy = linear acceleration of IMU with respect to the ground
anx = Xcomponent of acceleration of the helicopter
aqy = Y component of acceleration of the helicopter
ayz = Zcomponent of acceleration of the helicopter
amux = X component of acceleration of the IMU
amu.y Y component of acceleration of the IMU
amuz = Zcomponent of acceleration of the IMU
@ = angular velocity/rotation rate of IMU
& a = angular acceleration of IMU
p = angular velocity of the IMU/helicopter about X axis
q = angular velocity of the IMU/helicopter about Y axis
r = angular velocity of the IMU/helicopter about Z axis
d = relative displacement between the IMU and CG of
the helicopter with respect to the ground
dx = Xcomponent of relative displacement
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dz =
dt =
X =

Z component of relative displacement

time step

displacement of the IMU/helicopter along X direction
displacement of the IMU/helicopter along Y direction
displacement of the IMU/helicopter along Z direction

initial position of the helicopter with respect to the
ground

s/ = final position of the helicopter with respect to the
ground

= roll angle of the IMU/helicopter

= pitch angle of the IMU/helicopter
= roll angle of the IMU/helicopter
discrete time step

= acceleration due to Earth’s gravity (9.8 m/s?)
= vector of the states of the system

= system dynamics matrix

= white noise process vector

= process-noise matrix

= measurement vector

= measurement matrix

= white noise measurement vector

= fundamental or transition matrix

= covariance matrix after an update

= covariance matrix before an update
= Kalman gain matrix

= current state estimate

noise spectral density

= apriori estimate of current state

= apriori error in the current estimate
a posteriori error in the current estimate
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l. INTRODUCTION

EVELOPMENT of Unmanned Aerial Vehicles (UAVS) is
a promising research area due to their advanced
capabilities and great flexibility. A. M. Low's "Aerial Target"
of 1916 was the first known attempt at a powered UAV [1].
Autonomous mini helicopters are one such classification of
UAVSs. The ability of an unmanned autonomous helicopter to



vertically take-off and land as well as hover enables one to
operate in areas inaccessible by other vehicles. Furthermore, it
can perform tasks which would be exceedingly difficult or
hazardous for a manned vehicle. There are several possible
applications for this technology, including terrain surveying,
close-up inspection of power lines, military operations,
monitoring traffic, search-and-rescue missions, filming movies,
and the investigation and clean-up of hazardous waste sites.

However, one of the major difficulties of an autonomous
helicopter is to keep it hovering at a particular position and
attitude in a stable manner. Hence, the position estimation of
the vehicle is highly essential. Unfortunately, most of the
available positioning technologies have limitations either in
accuracy of the absolute position (eg. GPS with Selective
Availability), accumulated error (eg. dead-reckoning systems
such as odometry), or availability (eg. GPS with Differential
Correction) [2]. A plausible solution to determining the
vehicle’s position in some convenient coordinate system is by
using an Inertial Measurement Unit (IMU).

In this study, experiments were carried out using an IMU and
its data was analyzed. Suitable calibrations and corrections in
the output were made and the device limitations were realized.
The possible error contributions and their corrections were
investigated. Subsequently, the concept of Kalman filtering and
its applications were studied. Assuming two models in Kalman
filtering and using test flight data (GPS and IMU), velocity and
position estimations were analyzed.

The paper is organized as follows. The basic equations for
obtaining the helicopter position, which involve the IMU
parameters, are described in Section Il. The calibration of the
IMU and its associated experiment, including observations, are
presented in Section I1l. The results and graphs of the IMU
experiment are included in Section 1V. Kalman filtering
fundamentals and the models considered for state estimation
are mentioned in Section V. The Kalman filtering simulation
results are presented in Section VI. Finally, the concluding
remarks end the paper.

Il. STATE ESTIMATION USING IMU DATA

An IMU is an electronic device containing sensors and it
reports the following parameters of a craft —

1. Linear accelerations along X, Y, Z using accelerometers
(by measuring specific forces)

2. Angular rates about X, Y, Z using gyroscopes

3. Orientation i.e.,, roll ¢, pitch 6, yaw w, using
magnetometers (by measuring the magnetic field to
determine the magnetic heading)

From the linear acceleration and rotation rate data provided
by the IMU, the acceleration of the helicopter with respect to
the ground can be written as

where

dy = agxl+ayyf+ aH,Zi‘;' (2
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Gy = Gmuxt + Gy yf + Gy zk (3)
W=pi+qj+rk 4)

The above equations are written with respect to the ground
reference frame XYZ (after transformation of IMU data from
body reference frame to ground-fixed reference frame). Since
the IMU is placed close to the nose and along the central line of
the helicopter, the relative displacement between the CG of the
helicopter and the IMU, has components only along X and Z
directions as indicated by (5).

Using the linear acceleration values of the helicopter, the
displacement of the vehicle along X, Y, Z ground axes (fixed
reference frame) can be determined as follows.

ffOAt aH‘th =X

ffOAt aH‘ydt =Y
At
ffo aszdt =7
(6)

With s; known (which is the lift-off position for the
helicopter), the helicopter’s position 57 at any instant in ground
reference frame can be obtained in the following manner —

5;=75 + (Xi+Yj+Zk) )

1. IMU CALIBRATION AND EXPERIMENT

The following section elaborates the calibration of the IMU
3DM-GX1 and the experiment carried out for analyzing the
velocity and displacement outputs.

A. Setup and Components Used

Z

(b)

Figure 1 (a) Experimental setup, (b) MicroStrain 3DM-GX1 IMU [6]



IMU: MicroStrain 3DM-GX1

Servo motor: Futaba S3151

Potentiometer: Rotary potentiometer

Power Supply and DAQ: NI PXI1-1050, NI PX1-6289

The experimental setup was tested multiple times and
calibrated before the actual experiment was carried out to
ensure that the error contribution from the test setup is minimal
and insignificant. The mechanical misalignment in the setup,
the servo motor errors and the potentiometer errors were
checked and suitably rectified.

> w e

B. Device Calibration

IMU: The IMU was calibrated to show zero angular rates
along X, Y, Z axes when held stationary and acceleration due to
gravity along the vertical axis as 9.8 m/s?, through a LabVIEW
program. The sensor misalignment errors were also taken into
account during calibration.

Potentiometer: In a rotary potentiometer, V = f(6), where
@ is the angle of rotation of the potentiometer wiper and V is the
voltage output (potential difference between the wiper and
ground). In the experimental setup indicated by Figure 1, the
trim screw of the potentiometer, the armature of the servo
motor and the bar (to which the IMU is attached) rotate about
the same axis. Thus, @ can be considered as the angle of rotation
of the arm. The exact relation between 6 and v (voltage ratio) is
determined by

14

v= (8)

Maximum voltage output

Using a LabVIEW program, the duty cycle supplied to the
servo motor was increased in steps of 0.25% over its entire
range and the angle at every position was noted from the
protractor and recorded. Simultaneously, the voltage ratio was
calculated at every position. The subsequent plots were
obtained.

Angle (deg)

) I T D SO T E T TR
4 45 5 55 6 65 7 75 8 B5

Duty Cycle (%)
Figure 2 Plot of angle vs duty cycle

The exact relation between 6 and v is modeled as a linear
variation given by 6 = mv + ¢, where m is the slope and c is
the y-axis intercept. The values of m and c were found to be
336.526 (deg) and -134.435 (deg) respectively. This @ is taken
as the reference for angle of rotation of the IMU and its
derivatives for angular velocity and angular acceleration
respectively.
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Figure 3 Plot of angle vs voltage ratio
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C. Experiment

The following steps were executed:

1. A pulse-like input was given to the servo motor (to and fro
motion), with duty cycle varying over a range within
2-11% (minimum and maximum limits possible). The
upper limit in each case was achieved in 30 steps starting
from the lower limit and vice-versa (refer Figure 4).

2. The arm connected to the servo armature rotated to and fro
(once), thereby causing the IMU, which is attached to it in
a particular orientation, to also rotate.

3. Data was recorded from the potentiometer and IMU. The
data included time, voltage ratio, accelerations along the 3
axes, angular velocities about the 3 axes, and the roll, pitch,
yaw angles.

4. This procedure was repeated with different
orientations as well as duty cycle ranges.

IMU

o o
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3 4
Time(s)
Figure 4 Plot of duty cycle input to servo motor vs time

Figure 4 is an example of one of the inputs given to the servo
motor in terms of the duty cycle variation with time. In this
case, after approximately 1 second, the duty cycle changed
progressively from 2% (initial) to 11% (final) and after a brief
pause, returned to 2% and continued to remain in that position
till the end.



Plots of the following data were made and compared (for each
duty cycle range and orientation).

1. Angle of rotation from:
i. Potentiometer data [6; = mv + c]
ii. Euler angle from IMU [6]
iii. Angular rate data from IMU [6; = 63" + rAt]

iv. Tangential acceleration data from IMU [ 6, =
0, + Q'At + (a,/DAL? /2]

2. Angular velocity from:
i. Potentiometer data [, = A6, /At]
ii. Euler angle data from IMU [w, = AG,/At]
iii. Angular rate from IMU [w5]
iv. Tangential acceleration data from IMU
[wy = w4’ + (ar/DAL]
v. Radial acceleration data from IMU [ws = \/a,/l]

3. Angular acceleration from:
i. Potentiometer data [o; = Aw1/At]
ii. Euler angle data from IMU [a, = Aw,/At]
iii. Angular rate data from IMU [0z = Aws/At]
iv. Tangential acceleration data from IMU [a, = a./I]

At is the time step between two readings and I is the length of
the arm on which the IMU was fixed. The angle of rotation,
angular velocity and angular acceleration calculated above
using different data correspond to the parameters of one
particular orientation during any of the experimental runs i.e.,
either roll, pitch, or yaw motion with the remaining two angles
kept constant.

Various combinations of orientations and duty cycle ranges
were tested. The angle of orientation of the IMU ranged from 0°
to 90° about all three axes while the duty cycle ranged from 2%
to 11%. It was found that 1% change in duty cycle of the servo
motor corresponds to approximately 20° rotation of the IMU.

D. Observations and Corrections Implemented

1. Plots of the data from potentiometer and Euler Angles
(IMU) consistently matched in all the graphs.

2. Data from the rate gyroscope (IMU) were % of the
expected values. This error was rectified by changing the
values of GyroGainScale and AccelGainScale to 8500 and
10000 respectively in the LabVIEW program for IMU
Data Acquisition. These GainScales are constants
(calibration factors) for each of the sensors i.e., Rate
Gyroscopes and Accelerometers. It is known that the
rotation rate of the Earth about its axis is 7.292 x 10° rad/s.
Since this value is extremely small compared to the angular
velocities obtained in the experiment using the IMU
gyroscopes, the Earth’s rotation rate has been ignored.

3. Data from the accelerometers (IMU) were inconsistent in
all the graphs. The inconsistencies were reduced by
changing the integration method to trapezoidal from
rectangular. Euler Angle errors were duly noted and the
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appropriate corrections were made to the accelerometer
data.

4. Disturbances/deviations in the graphs were caused by
noise in the data and experimental vibrations. The noise in
the data was corrected by implementing 10 point moving
average while the experimental vibrations were lowered by
changing the arm on which the IMU was attached from
aluminum to composite carbon fiber material.

5. Similar results were observed for other IMU orientations
and duty cycle ranges.

6. Angle restrictions of -90° < ¢, 6 < +90° had to be followed.
There were no such restrictions in .
IV. RESULTS

A. Graphs of IMU Parameters vs Time

300

3 4
Time (s)

Figure 5 Yaw angle vs time for 2-11% duty cycle

In Figure 5, three plots match quite accurately while the
fourth plot of accelerometer data is deviating. The data is
consistent during the rise but subsequently, the deviation is
large. This is possibly because as angular acceleration is
integrated to obtain angle, the accumulated errors are also
integrated leading to further deviation from original plot.
2-11% duty cycle change corresponds to approximately 180°,
which is the largest possible range of motion in the experiment.
Despite the deviation, Figure 5 is the best plot among all the
ranges of angular motion. This is mostly because the large
angle change or slower motion rate allows the sensors to detect
changes in motion more accurately.

On observing Figure 6, it can be concluded that three plots
match perfectly, namely data from the Potentiometer, IMU
Euler Angle and IMU rate gyroscope. The remaining two are
accelerometer data plots. The data plot of accelerometer a,
(magenta) follows the expected trend in the peak regions while
that of a, (dark grey) approximately replicates the first peak
only. It can also be noted that after 2 s, the grey plot continues
to deviate with a brief match in the second peak rise. This
deviation again can be attributed to accumulated error, after
integrating from acceleration. Figure 6 is relatively the best
plot among all the angle ranges for reasons being similar to
those mentioned with Figure 5.
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Figure 6 Angular velocity (®,) vs time for 2-11% duty cycle
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Figure 7 Angular acceleration (a,) vs time for 2-11% duty cycle

Figure 7 depicts the best accelerometer data graph, with the
exception of one plot being mismatched. It was observed that in
most of the graphs where accelerometer data was quite
consistent with other plots, one of the peaks never
synchronized. The peak value was slightly higher or lower and
it occurred at any one of the four peaks. The exact reason for
this anomaly is still unknown. It is possible that at one peak, the
accelerometer did not respond to the change as expected but
once a change in motion occurred, it was able to pick up data
more accurately.

B. Bias Estimation of Accelerometer a,

Consider the acceleration along Z axis of the IMU a,, as
indicated by the accelerometer of the IMU. If we consider Roll
motion of the IMU i.e., the IMU to be rotated by an angle ¢
about its X axis and then kept stationary, at this instant, the
acceleration along Z axis can be modeled as

a, = gcosp + {B + SF(gcosp) + K(gcosp)?} €)]

where g is the acceleration due to gravity (9.81 m/s%), B is the
Bias error, SF is the Scale Factor and K is g-squared sensitive
Drift [3, pp. 82-83].

Theoretically, it is expected that the accelerometer output
will only contain the first term i.e., gcosp (vertical angle
dependent gravity term). In reality, the term within the curly
brackets is also added, which is the Error term. This error term
is a second order polynomial which is a function of gcosg.
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Bias error is an offset that remains constant in all measured
data which, in this case, is acceleration. Scale Factor is
proportionality constant between the measured and actual
acceleration, which appears as the coefficient of the first order
term in the error. g-squared sensitive Drift is the coefficient of
the second order error term. ‘g-squared’ implies that the error
term depends on either the square of a single acceleration, or
the product of two orthogonal accelerations [4].

In this section, the attempt made to estimate the above errors
for the Z axis accelerometer (by only changing roll angle) has
been described. The following steps were performed —

1. The IMU was mounted on a test rig which allowed roll,
pitch as well as yaw motions. For this experiment, the
orientation of the IMU was changed only about its X axis
(roll motion), while the pitch and yaw motions were
arrested.

2. The IMU was rotated from -40° to +40° with data
recorded at every 5°.

3. Using the data recorded, a graph of a, vs gcos¢p as well as

the general fit polynomial curve (2" order) for the same

were plotted.

The coefficients of the polynomial function were noted.

This experiment was performed 5 times and the average

errors were calculated.
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Figure 8 Graph of measured Z axis acceleration vs actual Z axis
acceleration

Figure 8 is the result for one set of data. The polynomial
coefficients were obtained where 0™ order signified B, 1 order
signified 1 + SF and 2" order signified K.

The average error values were calculated and are listed below.
Bias error B = 0.0513538 m/s’
Scale Factor SF = 0.008326
g-squared sensitive Drift K = 0.0004034 (m/s?)™*
It can be noted that these values are very small, with major

contribution from Bias, followed by Scale Factor and lastly,
g-dependent Drift.

V. KALMAN FILTERING

The Kalman Filter is an algorithm that uses the
measurements (from sensors), which contain noise and other
errors, and produces estimates of known as well as unknown



parameters which are more precise than the measured
quantities. It is the most important algorithm for state
estimation and it optimally combines the incoming
measurement data with the predicted filter state. It makes the
following assumptions —

1. The model (of the real world) is linear.

2. The system for which the states are to be estimated is
excited by process noise.

3. The measurements contain random measurement noise.

It has a wide range of applications including guidance,
navigation and control of vehicles like aircrafts, spacecraft and
ships, etc.

The working algorithm can be described in 2 steps —

1. Prediction step: The estimates of the current state
variables, including their uncertainties, are produced.

2. Correction step: The estimates are updated when a
measurement is available using a weighted average
concept.

In order to apply the Kalman filtering theory, our model of
the real world is described by a set of linear differential
equations which when represented in matrix or state-space
form is given by

x=Fx+Gu+w (10)

where X is a column vector with the states of the system, F is
the system dynamics matrix, u is a known or control vector and
w is a white-noise process vector [3, pp. 129]. There is a
process-noise matrix Q that is related to the process-noise
vector according to

Q = E[wwT] (11)

Process noise is an indicator to inform the filter that it is known
to us that our filter’s model of the real world is not precise. The
measurements are linearly related to the states according to

(12)

where z is the measurement vector, H is the measurement
matrix that relates the state to the measurement and v is the
white noise measurement vector [3, pp. 130]. The
measurement noise matrix R is related to the measurement
noise vector according to

R =E[vv"]

z=Hx+v

(13)

The fundamental/transition matrix for a time-invariant system
can be found from the system dynamics matrix using the
relation

(Ft)®

n
o) = eM=1+Ft+ X4 4 5L

n!

+ .. (14)

A. Discrete Polynomial Kalman Filter Without Control
Vector

This filter is applied for a polynomial measurement signal
corrupted with noise. The preceding relationships must be
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discretised to build a discrete Kalman filter. Terms involving
the control vector are eliminated. Our simulations use this
particular Kalman filter.

If the measurement is taken every Tg seconds (sampling
time), the discrete fundamental matrix is given by

Py = O(Ts) (15)
@, matrix was obtained by considering the first three-four terms
of the Taylor series expansion of @ (14).

The discrete form of the Kalman filtering measurement
equation becomes

z, = Hx, + v, (16)

and
R, = E{vkva} (17)

where Ry is a matrix consisting of the variances of each of the
measurement noise sources [3 , pp. 130]. The resultant Kalman
filtering equation is given by

X = OXyq + Ki(zp — HO X)) (18)

where K, represents the Kalman gain matrix and X, represents
the current state estimate [3 , pp. 130]. The Kalman gains are
computed (while the filter is operating) from the matrix Riccati
equations, which are a set of recursive matrix equations given

by

My = &P @ + Qy (29)
Kk = MkHT(HMkHT + Rk)_l (20)
P, = (- KH)M, (21)

where Py is a covariance matrix representing errors in the state
estimates (i.e., variance of truth minus estimate) after an
update, My is a covariance matrix representing errors in the
state estimates before an update and 1 is the identity matrix [3 ,
pp. 131]. The discrete process-noise matrix Q, can be found as
follows

Qi = J,"2()QPT(v) dr

To start the Riccati equations, an initial covariance matrix Py is
required, which is usually initialized to very high values.

(22)

The simulations were carried out assuming 2 models, namely
constant acceleration model and constant jerk model. The
following sections depict the parameters assumed and
calculated, which were instrumental in obtaining the Kalman
filter estimations of position, velocity and acceleration of the
helicopter.

B. Derivation of Matrix Riccati Equations

Considering that there is no deterministic disturbance or
control vector, the discrete model of the real world is given by

(23)

where @ is the matrix that propagates the states from one
sampling instant to the next and wy is white process noise vector

X = Opxp_q + Wy



[3, pp. 131]. From the previous section, it is known that the
Kalman filtering equation (18) is

X = QX g + Ki(zp — HOpX) 1)

In the above equation, z is the discrete measurement vector

(16).
From the Fundamental Theorem of Estimation Theory,
X = PpXpq (24)

where X5, is the a priori estimate of x, (before the measurement
at t) [5]. The error in the current estimate (after the

measurement at t,) is given by
e = X — X

(25)

while the a priori error (before the update) in the estimate is
given by

e, = X, — X (26)

On substituting (23) and (24) and subsequently (25) in (26), e,
can be alternatively expressed as

e]; = Cbkek_1 + Wi (27)
From the definition of Py,
P, = E{exe,"} = E{(x, — X)) (xx — %)} (28)
and according to the definition of M,
M, =Efeie;"} = E{(x; — ) — %)} (29)

Substituting (27) in (29) (first part) and using the property of
the sum of 2 orthogonal terms i.e.,

E{ekaT} = [0] (30)
the modified expression for M is obtained as
M, = ®yE{e,_se,,"}®," + E{w,w,"} (31)

Using the definitions of P,_; and Qy, (31) can be rewritten as
My = &P, @ + Q
which is the same as (19) (the first matrix Riccati equation).

Using (24), the Kalman filtering equation (18) can also be
expressed as

ik = 56\,; + Kk(Zk - HQ]:) = (I - KkH)f,: + Kkzk (32)

On substituting the expression for z, in (32) (second part) and
rearranging the terms,

ik = i; + KkH(xk - 2,:) + Kkvk (33)
On subtracting (33) from x, and grouping common terms,
X — X = (I — K H)(x — %) — K vy (34)

Substitution of (34) in the expression for Py (second part of
(28)) gives

Py = (I - KH)E{(x; — %) (x; — %)} — K H)" +
KkE{vkva}KkT (35)

Using (29) (second part) and (17), (35) can be modified to
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P,= (I- KkHM, (I - K. H)" + KR, K," (36)
On expanding (36),
P,= M, — K,HM, — M, H'K,” + K, (HM,H" +
ROK," @7
According to the rule of minimum mean-square error,
Yi=o E{ (eki)z} = tr[E{exe,"}] = tr[Py] (38)

In order to minimize the variance of the error in the estimate
over all possible choices of Ky (gains), the derivative of trace of
Pk (37) with respect to the gain matrix must be equated to zero
i.e.,
d tr[Pg] _
ok, 0]

(39)

The basic properties of trace of a matrix and derivative of trace
of a matrix i.e.,

tr[A] = tr[AT] (40)
dtrl4B] _ pr (41)
da
T
atrlACAT) _ - 42)
da

where A and B are square matrices and C is a symmetric
matrix, are used in simplifying the expanded form of (39), in
which K, and My are square matrices while (H MH" + Ry isa
symmetric matrix. Thus,

d tr[Py]
0Ky

The simplified form of (43) is given by
Kk = MkHT(HMkHT + Rk)_l
which is the same as (20) (the second matrix Riccati equation).

Substitution of the expression for K, (20) in the last term of
(37) i.e., K(HMHT + R)K," gives

P,= M, — K,HM, — M, H'K,” + M, H"(HM, H" +
R, Y(HMH" + R K, (44)

On performing basic and further
simplification, (44) yields

Py ={—- KH)M,

which is the same as (21) (the third matrix Riccati equation).

matrix operations

C. IMU (Single Sensor) as Measurement Source

For the first case, only acceleration was measured using the
IMU’s accelerometers. Tables | and Il show the different
matrices for the 2 models considered.

In Table I, ;2 is the variance in acceleration measurement
and its value was found to be 0.001(m/s%)% The IMU was kept
stationary and the accelerations were recorded for 5 minutes.
Using the acquired data, the variance for Z acceleration was
computed. This procedure was repeated three times and the
average variance was calculated. Ts is the sampling time of
acceleration measurement (of the IMU) and its value is 0.04 s.
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TABLE |
IMPORTANT MATRICES FOR DIFFERENT ORDER POLYNOMIAL KALMAN FILTERS
(SINGLE SENSOR OUTPUT)

Wz Measurement
(Polynomial Systems Dynamics Fundamental Measurement Nofee
Order)
TZ
Constant 010 171, =
Acceleration F=10 0 1] O, = 2 H=1[0 0 1] R, = 0;?
@ 00 0 0 1 T
0 0 1
2 3
[ oo &L
0100 [ 2 76|
Constant Jerk oo 10 _| T.2 _ 2
3 F=10 0 0 1l | ®=1o A H=1[0 0 1 0] R, = oy
0000 |[0 0 1 TSJ|
0 0 O 1
TABLE Il
DISCRETE PROCESS-NOISE MATRIX VARIES WITH SYSTEM ORDER (SINGLE SENSOR OUTPUT)
Model Continuous
(Polynomial . Fundamental Discrete Process-Noise
Process-Noise
Order)
Tss TS4 T53]
T,? 20 8 6
Constar!t 0 0 0 17, = IT“ 73 TZI
Acceleration Q=a,]0 0 0 O, = 2 Q= 0= = s
01 T, |8 3 2|
@ 001 .,
00 1 [T T, |
s 7z ©l
LS P
T2 T3 36 12 6 6
000 0 LT & & r° Tt TS T
Constant Jerk _loo oo _ T2 _oll2 4 2 2
®) Q=%15 0 0 0 ®%=lo 1 1, = Q= Pslr% 15
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In Table I, @ is the noise spectral which is a fudge factor
that accounts for the lack of knowledge of the real world and its
value was found to be 10™ in case of constant acceleration
model and 10™° in case of constant jerk model. Through trial
and error, those values were chosen at which the estimates
followed the trends of the measurements to a large extent.

D. GPS and IMU (Two Sensors) as Measurement Sources

In this case, acceleration was measured using the IMU’s
accelerometer and position was obtained using a GPS receiver.
Tables 111 and 1V show the different matrices for the 2 models
i.e., constant acceleration and constant jerk.

In Table 111, 6,2 is the variance in position measurement and
its value was found to be 9 m?. In this case, the sampling time
for position measurement has a value of 0.22 s. The NavStik

module (GPS) was kept stationary and the positions were
recorded for 5 minutes. Subsequently, the variance in position
was computed.

Table 1V is the same as Table Il with the only difference
being in the values assumed for the constants. In Table 1V, the
@, values chosen were the same as mentioned previously.
However, the sampling time (T;) for position measurement has
avalue of 0.22 s.

VI.

This section shows simulation results of state estimation
assuming both the models of Kalman filter and considering
both GPS and IMU data. The Kalman filter algorithm was
implemented utilizing multiple test flight data, and some of the
results are presented here.

SIMULATION RESULTS
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TABLE Il
IMPORTANT MATRICES FOR DIFFERENT ORDER POLYNOMIAL KALMAN FILTERS (2 SENSORS OUTPUT)
Model
(Polynomial Systems Dynamics Fundamental Measurement Measurement
Noise
Order)
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TABLE IV
DISCRETE PROCESS-NOISE MATRIX VARIES WITH SYSTEM ORDER (2 SENSORS OUTPUT)
Model Continuous
(Polynomial . Fundamental Discrete Process-Noise
Process-Noise
Order)
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A. Constant Acceleration Model Using Only IMU Data

On observing Figure 9(a) and Figure 9(b), it can be seen
that the estimate of the acceleration considering only IMU data
is the same as the measured acceleration i.e., there appears to be
no difference between the estimate and the measurement. This
indicates that the Kalman filter is not effective.

Since there is no sensor on board the helicopter which gives
velocity measurement directly, the reference for comparing
velocity estimate is obtained by differentiating the GPS data. It
can be seen from Figure 10 that the velocity estimate using
only IMU data is very poor as it deviates from the measurement
to a large extent.

Figure 11 shows that the position estimate using only IMU
data is highly erroneous (deviates by a maximum value of 900
m) and cannot be used for the position estimation of the
helicopter.

B. Observability

The reason for the errors in the Kalman filter estimate in the
previous case can be understood by realising the concept of
observability and its applications.

A system is said to be observable if, for any possible
sequence of state and control vectors, the current state can be
determined in finite time using only the outputs, i.e. from the
system's outputs it is possible to determine the behaviour of the
entire system.

Consider the discrete-time system
x(k+1) = Ax(k) + Bu(k) (45)
y(k) = Cx(k) + Du(k) (46)

The above system is observable if and only if the
observability matrix has a rank equal to n where n is the order
of the system model (number of state variables) [7]. The
observability matrix is defined as



c
CA

Mobs = (47)

CA‘n_l

Consider the constant acceleration Kalman filter model where
ordern=3.

Case 1: Only IMU output is taken as measurement

01 0
A=10 0 1 cC=1[0 0 1]
0 0 O
C 1 0 0
Myps = | CA =[O 0 1]
CA? 01 0

Since rank(Mgys) = 1 < 3, the system is not observable.

Case 2: Both GPS and IMU outputs are taken as measurements

010
A=10 o 1] C= [(1) 8 (1)
0 0O
[1 0 0]
c 0 0 1
Myps = | CA | = 0 10
CA2 0 0O
l0 0 1J
0 0O
In this case, rank(My,s) = 3 = 3. Hence, the system is
observable.
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Figure 9 (a) Measured X acceleration vs time; (b) X acceleration

estimate vs time
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Figure 11 Measured X position and X position estimate vs time

Thus, it can be concluded that the system is observable only
when position and acceleration are measured and not when only
accelerometer data is provided. It is also possible to observe the
system when only GPS data is used but the data acquisition rate
from the NavStik is quite low (4.5 Hz) whereas the
accelerometer/IMU gives data at 25 Hz. Hence, it is important
to consider data from both sensors for better state estimation.
These proofs also imply that Kalman filter algorithm works
only when the observability criterion is satisfied. The above
verification can also be made for constant jerk model.

C. Constant acceleration model using both GPS and IMU
data

Figure 12 clearly indicates that the Kalman filter estimate is
better than the accelerometer measurement (raw data) as there
is no deviation and the estimate follows the trend of the
measurement. This means that the algorithm is working

properly.

From Figures 13 and 14, it can be inferred that the Kalman
filter is effective as the estimates follow the trends of the
respective measurements. Furthermore, the estimate for
velocity appears to be better than the estimate for position as
there are no deviations in the former case.
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D. Constant Jerk Model Using Both GPS and IMU Data

Although the estimates of constant acceleration model
seemed satisfactory, the constant jerk model was also simulated
because in reality, the helicopter does not move with a constant
acceleration and a better approximation of the real world would
be the constant jerk model.
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Figure 15 Measured X acceleration and combined estimate of
X acceleration vs time
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Figures 15, 16 and 17 show that respective estimates follow
the expected trends and are marginally better than constant
acceleration model estimates (beyond 300 s). This conclusion is
further supported by observing the values assumed by ® for
constant acceleration model (10™) and constant jerk model
(10™°). The fact that the latter has a smaller value proves that



we are closer to the real world model. The ideal model which
replicates the real world would have @5 = 0. Hence if the value
of @4 is closer to 0, it is implied that the model is better. Another
observation which can be made is that during the time period
0-300 s, the constant acceleration model estimates (refer
Figures 12, 13 and 14) seem better than the constant jerk model
estimates. This is because up to 300 s, the helicopter was
stationary and this situation is best modeled by constant
acceleration. One of the important aspects of Kalman filtering
includes appropriate selection of the system model.
Consideration of an alternate model would lead to incorrect
estimates, which is visible in Figures 15, 16 and 17 for the first
300 s (when compared with the respective constant acceleration
model results).

The linear Kalman filter implemented for state estimation is
the first step to predicting the position of the helicopter. This
study will be extended further to more advanced models like
extended Kalman filter.

VIlI. CONCLUDING REMARKS

The first portion of the paper presented the calibration results
of the IMU Microstrain 3DM-GX1, which was mounted on the
helicopter, and the experiments which were conducted to
estimate angular acceleration, velocity and acceleration by
using the accelerometer, gyroscope and Euler Angle data and
their comparison with the potentiometer data. It was found that
the gyroscope and Euler Angle data consistently matched with
the reference in all the graphs. However, the accelerometer
plots were inconsistent and it could be concluded that the
accelerometers are quite sensitive and easily affected by noise
as well as other possible errors. These errors get propagated on
integration and lead to large deviations in velocity and position.
Errors like bias, scale factor and drift were found to be quite
small and negligible. Furthermore, it was found that
accelerometers detect changes and provide accurate data only
within certain limits of angular rates of the IMU motion.
Similar results were obtained for other orientations of the IMU.
The experiments also showed that the IMU yields more
accurate results in Yaw motion, with or without small
inclinations along other axes, compared to Roll and Pitch
motions.

The next section of the paper required the understanding of
Kalman filtering and its applications in state estimation. Using
previous test flight data, simulations were done to estimate
position, velocity and acceleration of the helicopter. Kalman
filtering algorithms were implemented using only IMU data as
well as both GPS and IMU data. It was found that Kalman
filters do not work when only IMU data is measured and this
was theoretically verified using the concept of observability.
This was followed by comparing two models — constant
acceleration and constant jerk while considering both GPS and
IMU data. It was found that both models showed good
estimations with constant jerk being a better approximation of
the real world model. These inferences can be drawn even for Y
axis parameters as the results were similar for both X axis and
Y axis estimates. The paper presents only the linear Kalman
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filter implementation which is a relatively simple math model.
Further studies will be carried out to estimate position using
other sophisticated models like extended Kalman filter.
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