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Abstract—The state estimation of Unmanned Aerial Vehicles 

(UAVs) is crucial to control their orientation and navigation. The 

ability of an unmanned autonomous helicopter to hover enables one to 

operate in areas inaccessible or hazardous to other vehicles. In order to 

achieve stable hovering at a particular attitude and height, accurate 

estimations of orientation and position are essential. This paper 

presents the research activity taken up at IIT Kanpur on the position 

estimation of an autonomous mini-helicopter. A study was conducted 

on the calibration of the onboard Inertial Measurement Unit (IMU) and 

its data was used to estimate position. The next step is aimed at 

integrating Global Positioning System (GPS) with the IMU to obtain 

more accurate/reliable data by implementing Kalman filtering. 

Keywords—Autonomous mini-helicopter, position estimation, 

IMU, GPS, Kalman filter. 

NOMENCLATURE 

UAV = Unmanned Air Vehicle 

IMU = Inertial Measurement Unit 

GPS = Global Positioning System 

XYZ = ground-fixed reference frame 

 ⃗  = linear acceleration of helicopter with respect to the 

ground 

 ⃗    = linear acceleration of IMU with respect to the ground 

aH,X = X component of acceleration of the helicopter 

aH,Y = Y component of acceleration of the helicopter 

aH,Z = Z component of acceleration of the helicopter 

aIMU,X = X component of acceleration of the IMU 

aIMU,Y = Y component of acceleration of the IMU 

aIMU,Z = Z component of acceleration of the IMU 

 ⃗⃗⃗ = angular velocity/rotation rate of IMU 

 ̇⃗⃗⃗;  ⃗ = angular acceleration of IMU 

p = angular velocity of the IMU/helicopter about X axis 

q = angular velocity of the IMU/helicopter about Y axis 

r = angular velocity of the IMU/helicopter about Z axis 

 ⃗ = relative displacement between the IMU and CG of 

the helicopter with respect to the ground 

dX = X component of relative displacement 

dZ = Z component of relative displacement 

dt = time step 

X = displacement of the IMU/helicopter along X direction 

Y = displacement of the IMU/helicopter along Y direction 

Z = displacement of the IMU/helicopter along Z direction 

  ⃗⃗⃗ = initial position of the helicopter with respect to the 

ground 

  ⃗⃗⃗⃗  = final position of the helicopter with respect to the 

ground 

φ = roll angle of the IMU/helicopter 

θ = pitch angle of the IMU/helicopter 

ψ = roll angle of the IMU/helicopter 

Δt = discrete time step 

g = acceleration due to Earth’s gravity (9.8 m/s
2
) 

x = vector of the states of the system 

F = system dynamics matrix 

w = white noise process vector 

Q = process-noise matrix 

z = measurement vector 

H = measurement matrix 

v = white noise measurement vector 

Φ = fundamental or transition matrix 

P = covariance matrix after an update 

M = covariance matrix before an update 

K = Kalman gain matrix 

 ̂  = current state estimate 

Φs = noise spectral density 

 ̂ 
  = a priori estimate of current state 

  
  = a priori error in the current estimate 

   = a posteriori error in the current estimate 

I. INTRODUCTION 

EVELOPMENT of Unmanned Aerial Vehicles (UAVs) is 

a promising research area due to their advanced 

capabilities and great flexibility. A. M. Low's "Aerial Target" 

of 1916 was the first known attempt at a powered UAV [1]. 

Autonomous mini helicopters are one such classification of 

UAVs. The ability of an unmanned autonomous helicopter to 
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vertically take-off and land as well as hover enables one to 

operate in areas inaccessible by other vehicles. Furthermore, it 

can perform tasks which would be exceedingly difficult or 

hazardous for a manned vehicle. There are several possible 

applications for this technology, including terrain surveying, 

close-up inspection of power lines, military operations, 

monitoring traffic, search-and-rescue missions, filming movies, 

and the investigation and clean-up of hazardous waste sites.  

However, one of the major difficulties of an autonomous 

helicopter is to keep it hovering at a particular position and 

attitude in a stable manner. Hence, the position estimation of 

the vehicle is highly essential. Unfortunately, most of the 

available positioning technologies have limitations either in 

accuracy of the absolute position (eg. GPS with Selective 

Availability), accumulated error (eg. dead-reckoning systems 

such as odometry), or availability (eg. GPS with Differential 

Correction) [2]. A plausible solution to determining the 

vehicle’s position in some convenient coordinate system is by 

using an Inertial Measurement Unit (IMU). 

In this study, experiments were carried out using an IMU and 

its data was analyzed. Suitable calibrations and corrections in 

the output were made and the device limitations were realized. 

The possible error contributions and their corrections were 

investigated. Subsequently, the concept of Kalman filtering and 

its applications were studied. Assuming two models in Kalman 

filtering and using test flight data (GPS and IMU), velocity and 

position estimations were analyzed. 

The paper is organized as follows. The basic equations for 

obtaining the helicopter position, which involve the IMU 

parameters, are described in Section II. The calibration of the 

IMU and its associated experiment, including observations, are 

presented in Section III. The results and graphs of the IMU 

experiment are included in Section IV. Kalman filtering 

fundamentals and the models considered for state estimation 

are mentioned in Section V. The Kalman filtering simulation 

results are presented in Section VI. Finally, the concluding 

remarks end the paper. 

II. STATE ESTIMATION USING IMU DATA 

An IMU is an electronic device containing sensors and it 

reports the following parameters of a craft – 

1. Linear accelerations along X, Y, Z using accelerometers 

(by measuring specific forces) 
2. Angular rates about X, Y, Z using gyroscopes 
3. Orientation i.e., roll φ, pitch θ, yaw ψ, using 

magnetometers (by measuring the magnetic field to 

determine the magnetic heading) 

From the linear acceleration and rotation rate data provided 

by the IMU, the acceleration of the helicopter with respect to 

the ground can be written as 

                 ⃗    ⃗       ( ̇⃗⃗⃗   ⃗)   ⃗⃗⃗  ( ⃗⃗⃗   ⃗)  (1)  

where 

                          ⃗        ̂       ̂       ̂ (2) 

                    ⃗            ̂         ̂         ̂ (3) 

                                 ⃗⃗⃗    ̂    ̂    ̂ (4) 

                                   ⃗     ̂      ̂ (5) 

The above equations are written with respect to the ground 

reference frame XYZ (after transformation of IMU data from 

body reference frame to ground-fixed reference frame). Since 

the IMU is placed close to the nose and along the central line of 

the helicopter, the relative displacement between the CG of the 

helicopter and the IMU, has components only along X and Z 

directions as indicated by (5). 

Using the linear acceleration values of the helicopter, the 

displacement of the vehicle along X, Y, Z ground axes (fixed 

reference frame) can be determined as follows. 

                                    

∬       
  

 
  

∬       
  

 
  

∬       
  

 
  

           

(6) 

With   ⃗⃗⃗  known (which is the lift-off position for the 

helicopter), the helicopter’s position   ⃗⃗⃗⃗  at any instant in ground 

reference frame can be obtained in the following manner – 

                             ⃗⃗⃗⃗     ⃗⃗⃗       ̂    ̂    ̂  (7) 

III. IMU CALIBRATION AND EXPERIMENT 

The following section elaborates the calibration of the IMU 

3DM-GX1 and the experiment carried out for analyzing the 

velocity and displacement outputs. 

A. Setup and Components Used 

 
(a) 

 
(b) 

Figure 1 (a) Experimental setup, (b) MicroStrain 3DM-GX1 IMU [6] 
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1. IMU: MicroStrain  3DM-GX1 

2. Servo motor: Futaba S3151 

3. Potentiometer: Rotary potentiometer 

4. Power Supply and DAQ: NI PXI-1050, NI PXI-6289 

The experimental setup was tested multiple times and 

calibrated before the actual experiment was carried out to 

ensure that the error contribution from the test setup is minimal 

and insignificant. The mechanical misalignment in the setup, 

the servo motor errors and the potentiometer errors were 

checked and suitably rectified. 

B. Device Calibration 

IMU: The IMU was calibrated to show zero angular rates 

along X, Y, Z axes when held stationary and acceleration due to 

gravity along the vertical axis as 9.8 m/s
2
, through a LabVIEW 

program. The sensor misalignment errors were also taken into 

account during calibration. 

Potentiometer: In a rotary potentiometer,       , where 

θ is the angle of rotation of the potentiometer wiper and V  is the 

voltage output (potential difference between the wiper and 

ground). In the experimental setup indicated by Figure 1, the 

trim screw of the potentiometer, the armature of the servo 

motor and the bar (to which the IMU is attached) rotate about 

the same axis. Thus, θ can be considered as the angle of rotation 

of the arm. The exact relation between θ and   (voltage ratio) is 

determined by 

                             
 

                      
 (8) 

Using a LabVIEW program, the duty cycle supplied to the 

servo motor was increased in steps of 0.25% over its entire 

range and the angle at every position was noted from the 

protractor and recorded. Simultaneously, the voltage ratio was 

calculated at every position. The subsequent plots were 

obtained. 

 

Figure 2 Plot of angle vs duty cycle 

The exact relation between θ and   is modeled as a linear 

variation given by       , where m is the slope and c is 

the y-axis intercept. The values of m and c were found to be 

336.526 (deg) and -134.435 (deg) respectively. This θ is taken 

as the reference for angle of rotation of the IMU and its 

derivatives for angular velocity and angular acceleration 

respectively. 

 

Figure 3 Plot of angle vs voltage ratio 

C. Experiment 

The following steps were executed: 

1. A pulse-like input was given to the servo motor (to and fro 

motion), with duty cycle varying over a range within 

2-11% (minimum and maximum limits possible). The 

upper limit in each case was achieved in 30 steps starting 

from the lower limit and vice-versa (refer Figure 4). 

2. The arm connected to the servo armature rotated to and fro 

(once), thereby causing the IMU, which is attached to it in 

a particular orientation, to also rotate. 

3. Data was recorded from the potentiometer and IMU. The 

data included time, voltage ratio, accelerations along the 3 

axes, angular velocities about the 3 axes, and the roll, pitch, 

yaw angles. 

4. This procedure was repeated with different IMU 

orientations as well as duty cycle ranges. 

 

Figure 4 Plot of duty cycle input to servo motor vs time 

Figure 4 is an example of one of the inputs given to the servo 

motor in terms of the duty cycle variation with time. In this 

case, after approximately 1 second, the duty cycle changed 

progressively from 2% (initial) to 11% (final) and after a brief 

pause, returned to 2% and continued to remain in that position 

till the end. 
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Plots of the following data were made and compared (for each 

duty cycle range and orientation). 

1. Angle of rotation from: 

i. Potentiometer data [θ1 = mv + c] 

ii. Euler angle from IMU [θ2] 

iii. Angular rate data from IMU [θ3 = θ3’ + rΔt] 

iv. Tangential acceleration data from IMU [    
                     ] 

2. Angular velocity from: 

i. Potentiometer data [ω1 = Δθ1 Δt] 

ii. Euler angle data from IMU [ω2 = Δθ2 Δt] 

iii. Angular rate from IMU [ω3] 

iv. Tangential acceleration data from IMU  

[                ] 

v. Radial acceleration data from IMU [    √    ] 

3. Angular acceleration from: 

i. Potentiometer data [α1 = Δω1 Δt] 

ii. Euler angle data from IMU [α2 = Δω2 Δt] 

iii. Angular rate data from IMU [α3 = Δω3 Δt] 

iv. Tangential acceleration data from IMU [        ] 

Δt is the time step between two readings and l is the length of 

the arm on which the IMU was fixed. The angle of rotation, 

angular velocity and angular acceleration calculated above 

using different data correspond to the parameters of one 

particular orientation during any of the experimental runs i.e., 

either roll, pitch, or yaw motion with the remaining two angles 

kept constant. 

Various combinations of orientations and duty cycle ranges 

were tested. The angle of orientation of the IMU ranged from 0
o
 

to 90
o
 about all three axes while the duty cycle ranged from 2% 

to 11%. It was found that 1% change in duty cycle of the servo 

motor corresponds to approximately 20° rotation of the IMU. 

D. Observations and Corrections Implemented 

1. Plots of the data from potentiometer and Euler Angles 

(IMU) consistently matched in all the graphs. 

2. Data from the rate gyroscope (IMU) were ½  of the 

expected values. This error was rectified by changing the 

values of GyroGainScale and AccelGainScale to 8500 and 

10000 respectively in the LabVIEW program for IMU 

Data Acquisition. These GainScales are constants 

(calibration factors) for each of the sensors i.e., Rate 

Gyroscopes and Accelerometers. It is known that the 

rotation rate of the Earth about its axis is 7.292 x 10
-5

 rad/s. 

Since this value is extremely small compared to the angular 

velocities obtained in the experiment using the IMU 

gyroscopes, the Earth’s rotation rate has been ignored. 

3. Data from the accelerometers (IMU) were inconsistent in 

all the graphs. The inconsistencies were reduced by 

changing the integration method to trapezoidal from 

rectangular. Euler Angle errors were duly noted and the 

appropriate corrections were made to the accelerometer 

data. 

4. Disturbances/deviations in the graphs were caused by 

noise in the data and experimental vibrations. The noise in 

the data was corrected by implementing 10 point moving 

average while the experimental vibrations were lowered by 

changing the arm on which the IMU was attached from 

aluminum to composite carbon fiber material. 

5. Similar results were observed for other IMU orientations 

and duty cycle ranges. 

6. Angle restrictions of -90° < φ, θ < +90° had to be followed. 

There were no such restrictions in ψ. 

IV. RESULTS 

A. Graphs of IMU Parameters vs Time 

 

Figure 5 Yaw angle vs time for 2-11% duty cycle 

In Figure 5, three plots match quite accurately while the 

fourth plot of accelerometer data is deviating. The data is 

consistent during the rise but subsequently, the deviation is 

large. This is possibly because as angular acceleration is 

integrated to obtain angle, the accumulated errors are also 

integrated leading to further deviation from original plot. 

2-11% duty cycle change corresponds to approximately 180°, 

which is the largest possible range of motion in the experiment. 

Despite the deviation, Figure 5 is the best plot among all the 

ranges of angular motion. This is mostly because the large 

angle change or slower motion rate allows the sensors to detect 

changes in motion more accurately. 

On observing Figure 6, it can be concluded that three plots 

match perfectly, namely data from the Potentiometer, IMU 

Euler Angle and IMU rate gyroscope. The remaining two are 

accelerometer data plots. The data plot of accelerometer ay 

(magenta) follows the expected trend in the peak regions while 

that of ax (dark grey) approximately replicates the first peak 

only. It can also be noted that after 2 s, the grey plot continues 

to deviate with a brief match in the second peak rise. This 

deviation again can be attributed to accumulated error, after 

integrating from acceleration. Figure 6 is relatively the best 

plot among all the angle ranges for reasons being similar to 

those mentioned with Figure 5. 
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Figure 6 Angular velocity (ωz) vs time for 2-11% duty cycle 

 
Figure 7 Angular acceleration (αz) vs time for 2-11% duty cycle 

Figure 7 depicts the best accelerometer data graph, with the 

exception of one plot being mismatched. It was observed that in 

most of the graphs where accelerometer data was quite 

consistent with other plots, one of the peaks never 

synchronized. The peak value was slightly higher or lower and 

it occurred at any one of the four peaks. The exact reason for 

this anomaly is still unknown. It is possible that at one peak, the 

accelerometer did not respond to the change as expected but 

once a change in motion occurred, it was able to pick up data 

more accurately. 

B. Bias Estimation of Accelerometer az 

Consider the acceleration along Z axis of the IMU az, as 

indicated by the accelerometer of the IMU. If we consider Roll 

motion of the IMU i.e., the IMU to be rotated by an angle φ 

about its X axis and then kept stationary, at this instant, the 

acceleration along Z axis can be modeled as 

                                            (9) 

where g is the acceleration due to gravity (9.81 m/s
2
), B is the 

Bias error, SF is the Scale Factor and K is g-squared sensitive 

Drift [3], pp. 82-83]. 

Theoretically, it is expected that the accelerometer output 

will only contain the first term i.e., gcosφ (vertical angle 

dependent gravity term). In reality, the term within the curly 

brackets is also added, which is the Error term. This error term 

is a second order polynomial which is a function of gcosφ. 

Bias error is an offset that remains constant in all measured 

data which, in this case, is acceleration. Scale Factor is 

proportionality constant between the measured and actual 

acceleration, which appears as the coefficient of the first order 

term in the error. g-squared sensitive Drift is the coefficient of 

the second order error term. ‘g-squared’ implies that the error 

term depends on either the square of a single acceleration, or 

the product of two orthogonal accelerations [4]. 

In this section, the attempt made to estimate the above errors 

for the Z axis accelerometer (by only changing roll angle) has 

been described. The following steps were performed – 

1. The IMU was mounted on a test rig which allowed roll, 

pitch as well as yaw motions. For this experiment, the 

orientation of the IMU was changed only about its X axis 

(roll motion), while the pitch and yaw motions were 

arrested. 

2. The IMU was rotated from -40° to +40°, with data 

recorded at every 5°. 

3. Using the data recorded, a graph of az vs gcosφ as well as 

the general fit polynomial curve (2
nd

 order) for the same 

were plotted. 

4. The coefficients of the polynomial function were noted. 

5. This experiment was performed 5 times and the average 

errors were calculated. 

 
Figure 8 Graph of measured Z axis acceleration vs actual Z axis 

acceleration 

Figure 8 is the result for one set of data. The polynomial 

coefficients were obtained where 0
th

 order signified B, 1
st
 order 

signified 1 + SF and 2
nd

 order signified K. 

The average error values were calculated and are listed below. 

Bias error B = 0.0513538 m/s
2
 

Scale Factor SF = 0.008326 

g-squared sensitive Drift K = 0.0004034 (m/s
2
)

-1
 

It can be noted that these values are very small, with major 

contribution from Bias, followed by Scale Factor and lastly, 

g-dependent Drift. 

V. KALMAN FILTERING 

The Kalman Filter is an algorithm that uses the 

measurements (from sensors), which contain noise and other 

errors, and produces estimates of known as well as unknown 
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parameters which are more precise than the measured 

quantities. It is the most important algorithm for state 

estimation and it optimally combines the incoming 

measurement data with the predicted filter state. It makes the 

following assumptions – 

1. The model (of the real world) is linear. 

2. The system for which the states are to be estimated is 

excited by process noise. 

3. The measurements contain random measurement noise. 

It has a wide range of applications including guidance, 

navigation and control of vehicles like aircrafts, spacecraft and 

ships, etc. 

The working algorithm can be described in 2 steps – 

1. Prediction step: The estimates of the current state 

variables, including their uncertainties, are produced. 

2. Correction step: The estimates are updated when a 

measurement is available using a weighted average 

concept. 

In order to apply the Kalman filtering theory, our model of 

the real world is described by a set of linear differential 

equations which when represented in matrix or state-space 

form is given by 

                                  ̇          (10) 

where x is a column vector with the states of the system, F is 

the system dynamics matrix, u is a known or control vector and 

w is a white-noise process vector [3], pp. 129]. There is a 

process-noise matrix Q that is related to the process-noise 

vector according to 

                                         [   ] (11) 

Process noise is an indicator to inform the filter that it is known 

to us that our filter’s model of the real world is not precise. The 

measurements are linearly related to the states according to 

                                              (12) 

where z is the measurement vector, H is the measurement 

matrix that relates the state to the measurement and v is the 

white noise measurement vector [3], pp. 130]. The 

measurement noise matrix R is related to the measurement 

noise vector according to 

                                          [   ] (13) 

The fundamental/transition matrix for a time-invariant system 

can be found from the system dynamics matrix using the 

relation 

          Φ               
     

  
      

     

  
    (14) 

A. Discrete Polynomial Kalman Filter Without Control 

Vector 

This filter is applied for a polynomial measurement signal 

corrupted with noise. The preceding relationships must be 

discretised to build a discrete Kalman filter. Terms involving 

the control vector are eliminated. Our simulations use this 

particular Kalman filter. 

If the measurement is taken every Ts seconds (sampling 

time), the discrete fundamental matrix is given by 

                                                   (15) 

Φk matrix was obtained by considering the first three-four terms 

of the Taylor series expansion of Φ (14). 

The discrete form of the Kalman filtering measurement 

equation becomes 

                                                (16) 

and 

                                              
   (17) 

where Rk is a matrix consisting of the variances of each of the 

measurement noise sources [3], pp. 130]. The resultant Kalman 

filtering equation is given by 

                     ̂      ̂                ̂     (18) 

where Kk represents the Kalman gain matrix and  ̂  represents 

the current state estimate [3], pp. 130]. The Kalman gains are 

computed (while the filter is operating) from the matrix Riccati 

equations, which are a set of recursive matrix equations given 

by 

                                           
      (19) 

                                 
      

      
   (20) 

                                               (21) 

where Pk is a covariance matrix representing errors in the state 

estimates (i.e., variance of truth minus estimate) after an 

update, Mk is a covariance matrix representing errors in the 

state estimates before an update and I is the identity matrix [3], 

pp. 131]. The discrete process-noise matrix Qk can be found as 

follows 

                                   ∫           
  
 

   (22) 

To start the Riccati equations, an initial covariance matrix P0 is 

required, which is usually initialized to very high values. 

The simulations were carried out assuming 2 models, namely 

constant acceleration model and constant jerk model. The 

following sections depict the parameters assumed and 

calculated, which were instrumental in obtaining the Kalman 

filter estimations of position, velocity and acceleration of the 

helicopter. 

B. Derivation of Matrix Riccati Equations 

Considering that there is no deterministic disturbance or 

control vector, the discrete model of the real world is given by 

                                               (23) 

where Φk is the matrix that propagates the states from one 

sampling instant to the next and wk is white process noise vector 
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[3], pp. 131]. From the previous section, it is known that the 

Kalman filtering equation (18) is 

 ̂      ̂                ̂     

In the above equation, zk is the discrete measurement vector 

(16). 

From the Fundamental Theorem of Estimation Theory, 

                                      ̂ 
      ̂    (24) 

where  ̂ 
  is the a priori estimate of xk (before the measurement 

at tk) [5]. The error in the current estimate (after the 

measurement at tk) is given by 

                                             ̂  (25) 

while the a priori error (before the update) in the estimate is 

given by 

                                      
        ̂ 

  (26) 

On substituting (23) and (24) and subsequently (25) in (26),   
  

can be alternatively expressed as 

                                  
              (27) 

From the definition of Pk, 

                    
            ̂        ̂  

           (28) 

and according to the definition of Mk, 

                 
   

             ̂ 
        ̂ 

             (29) 

Substituting (27) in (29) (first part) and using the property of 

the sum of 2 orthogonal terms i.e., 

                                         
   [ ] (30) 

the modified expression for Mk is obtained as 

                             
    

         
   (31) 

Using the definitions of Pk-1 and Qk, (31) can be rewritten as 

            
      

which is the same as (19) (the first matrix Riccati equation). 

Using (24), the Kalman filtering equation (18) can also be 

expressed as 

    ̂    ̂ 
            ̂ 

           ̂ 
        (32) 

On substituting the expression for zk in (32) (second part) and 

rearranging the terms, 

                    ̂    ̂ 
            ̂ 

         (33) 

On subtracting (33) from xk and grouping common terms, 

                  ̂                ̂ 
         (34) 

Substitution of (34) in the expression for Pk (second part of  

(28)) gives 

                    ̂ 
        ̂ 

              

         
    

  (35) 

Using (29) (second part) and (17), (35) can be modified to 

                                         
  (36) 

On expanding (36), 

                  
   

          
  

      
  (37) 

According to the rule of minimum mean-square error, 

               ∑    
       

      [      
  ]     [  ] (38) 

In order to minimize the variance of the error in the estimate 

over all possible choices of Kk (gains), the derivative of trace of 

Pk (37) with respect to the gain matrix must be equated to zero 

i.e., 

                                         
    [  ]

   
 [ ] (39) 

The basic properties of trace of a matrix and derivative of trace 

of a matrix i.e., 

                                        [ ]     [  ]                             (40) 

                                         
    [  ]

  
                                 (41) 

                                      
    [    ]

  
                              (42) 

where A and B are square matrices and C is a symmetric 

matrix, are used in simplifying the expanded form of (39), in 

which Kk and Mk are square matrices while (HMkH
T
 + Rk) is a 

symmetric matrix. Thus, 

       
    [  ]

   
      

           
       [ ] (43) 

The simplified form of (43) is given by 

       
      

      
   

which is the same as (20) (the second matrix Riccati equation). 

Substitution of the expression for Kk (20) in the last term of 

(37) i.e., Kk(HMkH
T
 + Rk)Kk

T
 gives 

                  
   

       
      

  

    
       

        
                                               (44) 

On performing basic matrix operations and further 

simplification, (44) yields 

              

which is the same as (21) (the third matrix Riccati equation). 

C. IMU (Single Sensor) as Measurement Source 

For the first case, only acceleration was measured using the 

IMU’s accelerometers. Tables I and II show the different 

matrices for the 2 models considered. 

In Table I,   ̈
  is the variance in acceleration measurement 

and its value was found to be 0.001(m/s
2
)

2
. The IMU was kept 

stationary and the accelerations were recorded for 5 minutes. 

Using the acquired data, the variance for Z acceleration was 

computed. This procedure was repeated three times and the 

average variance was calculated. Ts is the sampling time of 

acceleration measurement (of the IMU) and its value is 0.04 s. 



Journal of Unmanned System Technology 94 

 

 

TABLE I 

IMPORTANT MATRICES FOR DIFFERENT ORDER POLYNOMIAL KALMAN FILTERS 

(SINGLE SENSOR OUTPUT) 

Model 

(Polynomial 

Order) 

Systems Dynamics Fundamental Measurement 
Measurement 

Noise 

Constant 

Acceleration 

(2) 
   [

   
   
   

] Φ   [
   

  
 

 
    

   

]    [   ]       ̈
  

Constant Jerk 
(3) 

   [

    
    
    
    

] Φ   

[
 
 
 
 
    

  
 

 

  
 

 

    

  
 

 
     

    ]
 
 
 
 
 

    [    ]       ̈
  

 

TABLE II 

DISCRETE PROCESS-NOISE MATRIX VARIES WITH SYSTEM ORDER (SINGLE SENSOR OUTPUT) 

Model 

(Polynomial 

Order) 

Continuous 

Process-Noise 
Fundamental Discrete Process-Noise 

Constant 

Acceleration 

(2) 

   Φ [
   
   
   

] Φ   [
   

  
 

 
    

   

]     Φ 

[
 
 
 
 
 
 
  

 

  

  
 

 

  
 

 
  

 

 

  
 

 

  
 

 
  

 

 

  
 

 
  ]

 
 
 
 
 
 

 

Constant Jerk 

(3) 
   Φ [

    
    
    
    

] Φ   

[
 
 
 
 
    

  
 

 

  
 

 

    

  
 

 
     

    ]
 
 
 
 
 

     Φ 

[
 
 
 
 
 
 
 
 
  

 

  

  
 

  

  
 

 

  
 

 
  

 

  

  
 

 

  
 

 

  
 

 
  

 

 

  
 

 
  

   

  
 

 

  
 

 
   ]

 
 
 
 
 
 
 
 

 

 

In Table II, Φs is the noise spectral which is a fudge factor 

that accounts for the lack of knowledge of the real world and its 

value was found to be 10
-11

 in case of constant acceleration 

model and 10
-16

 in case of constant jerk model. Through trial 

and error, those values were chosen at which the estimates 

followed the trends of the measurements to a large extent. 

D. GPS and IMU (Two Sensors) as Measurement Sources 

In this case, acceleration was measured using the IMU’s 

accelerometer and position was obtained using a GPS receiver. 

Tables III and IV show the different matrices for the 2 models 

i.e., constant acceleration and constant jerk. 

In Table III, σx
2
 is the variance in position measurement and 

its value was found to be 9 m
2
. In this case, the sampling time 

for position measurement has a value of 0.22 s. The NavStik 

module (GPS) was kept stationary and the positions were 

recorded for 5 minutes. Subsequently, the variance in position 

was computed. 

Table IV is the same as Table II with the only difference 

being in the values assumed for the constants. In Table IV, the 

Φs values chosen were the same as mentioned previously. 

However, the sampling time (Ts) for position measurement has 

a value of 0.22 s. 

VI. SIMULATION RESULTS 

This section shows simulation results of state estimation 

assuming both the models of Kalman filter and considering 

both GPS and IMU data. The Kalman filter algorithm was 

implemented utilizing multiple test flight data, and some of the 

results are presented here. 
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TABLE III  

IMPORTANT MATRICES FOR DIFFERENT ORDER POLYNOMIAL KALMAN FILTERS (2 SENSORS OUTPUT) 

Model 

(Polynomial 

Order) 

Systems Dynamics Fundamental Measurement 
Measurement 

Noise 
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Acceleration 
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TABLE IV  

DISCRETE PROCESS-NOISE MATRIX VARIES WITH SYSTEM ORDER (2 SENSORS OUTPUT) 

Model 

(Polynomial 

Order) 

Continuous 

Process-Noise 
Fundamental Discrete Process-Noise 
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A. Constant Acceleration Model Using Only IMU Data 

On observing Figure 9(a) and Figure 9(b), it can be seen 

that the estimate of the acceleration considering only IMU data 

is the same as the measured acceleration i.e., there appears to be 

no difference between the estimate and the measurement. This 

indicates that the Kalman filter is not effective. 

Since there is no sensor on board the helicopter which gives 

velocity measurement directly, the reference for comparing 

velocity estimate is obtained by differentiating the GPS data. It 

can be seen from Figure 10 that the velocity estimate using 

only IMU data is very poor as it deviates from the measurement 

to a large extent. 

Figure 11 shows that the position estimate using only IMU 

data is highly erroneous (deviates by a maximum value of 900 

m) and cannot be used for the position estimation of the 

helicopter. 

B. Observability 

The reason for the errors in the Kalman filter estimate in the 

previous case can be understood by realising the concept of 

observability and its applications. 

A system is said to be observable if, for any possible 

sequence of state and control vectors, the current state can be 

determined in finite time using only the outputs, i.e. from the 

system's outputs it is possible to determine the behaviour of the 

entire system. 

Consider the discrete-time system 

                                                (45) 

                                                (46) 

The above system is observable if and only if the 

observability matrix has a rank equal to n where n is the order 

of the system model (number of state variables) [7]. The 

observability matrix is defined as 
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Consider the constant acceleration Kalman filter model where 

order n = 3. 

Case 1: Only IMU output is taken as measurement 
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Since rank(Mobs) = 1 < 3, the system is not observable. 

Case 2: Both GPS and IMU outputs are taken as measurements 
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In this case, rank(Mobs) = 3 = 3. Hence, the system is 

observable. 

 

 
Figure 9 (a) Measured X acceleration vs time; (b) X acceleration 

estimate vs time 

 
Figure 10 X GPS data differentiated and X velocity estimate vs 

time 

 
Figure 11 Measured X position and X position estimate vs time 

 Thus, it can be concluded that the system is observable only 

when position and acceleration are measured and not when only 

accelerometer data is provided. It is also possible to observe the 

system when only GPS data is used but the data acquisition rate 

from the NavStik is quite low (4.5 Hz) whereas the 

accelerometer/IMU gives data at 25 Hz. Hence, it is important 

to consider data from both sensors for better state estimation. 

These proofs also imply that Kalman filter algorithm works 

only when the observability criterion is satisfied. The above 

verification can also be made for constant jerk model. 

C. Constant acceleration model using both GPS and IMU 

data 

Figure 12 clearly indicates that the Kalman filter estimate is 

better than the accelerometer measurement (raw data) as there 

is no deviation and the estimate follows the trend of the 

measurement. This means that the algorithm is working 

properly. 

From Figures 13 and 14, it can be inferred that the Kalman 

filter is effective as the estimates follow the trends of the 

respective measurements. Furthermore, the estimate for 

velocity appears to be better than the estimate for position as 

there are no deviations in the former case. 

(a) 

(b) 
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Figure 12 Measured X acceleration and combined estimate of       

X acceleration vs time 

 

Figure 13 X GPS data differentiated and combined estimate of     

X velocity vs time 

 

Figure 14 Measured X position and combined estimate of               

X position vs time 

D. Constant Jerk Model Using Both GPS and IMU Data 

Although the estimates of constant acceleration model 

seemed satisfactory, the constant jerk model was also simulated 

because in reality, the helicopter does not move with a constant 

acceleration and a better approximation of the real world would 

be the constant jerk model. 

 

 

Figure 15 Measured X acceleration and combined estimate of       

X acceleration vs time 

 
Figure 16 X GPS data differentiated and combined estimate of     

X velocity vs time 

 
Figure 17 Measured X position and combined estimate of               

X position vs time 

Figures 15, 16 and 17 show that respective estimates follow 

the expected trends and are marginally better than constant 

acceleration model estimates (beyond 300 s). This conclusion is 

further supported by observing the values assumed by Φs for 

constant acceleration model (10
-11

) and constant jerk model 

(10
-16

). The fact that the latter has a smaller value proves that 
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we are closer to the real world model. The ideal model which 

replicates the real world would have Φs = 0. Hence if the value 

of Φs is closer to 0, it is implied that the model is better. Another 

observation which can be made is that during the time period 

0-300 s, the constant acceleration model estimates (refer 

Figures 12, 13 and 14) seem better than the constant jerk model 

estimates. This is because up to 300 s, the helicopter was 

stationary and this situation is best modeled by constant 

acceleration. One of the important aspects of Kalman filtering 

includes appropriate selection of the system model. 

Consideration of an alternate model would lead to incorrect 

estimates, which is visible in Figures 15, 16 and 17 for the first 

300 s (when compared with the respective constant acceleration 

model results). 

The linear Kalman filter implemented for state estimation is 

the first step to predicting the position of the helicopter. This 

study will be extended further to more advanced models like 

extended Kalman filter. 

VII. CONCLUDING REMARKS 

The first portion of the paper presented the calibration results 

of the IMU Microstrain 3DM-GX1, which was mounted on the 

helicopter, and the experiments which were conducted to 

estimate angular acceleration, velocity and acceleration by 

using the accelerometer, gyroscope and Euler Angle data and 

their comparison with the potentiometer data. It was found that 

the gyroscope and Euler Angle data consistently matched with 

the reference in all the graphs. However, the accelerometer 

plots were inconsistent and it could be concluded that the 

accelerometers are quite sensitive and easily affected by noise 

as well as other possible errors. These errors get propagated on 

integration and lead to large deviations in velocity and position. 

Errors like bias, scale factor and drift were found to be quite 

small and negligible. Furthermore, it was found that 

accelerometers detect changes and provide accurate data only 

within certain limits of angular rates of the IMU motion. 

Similar results were obtained for other orientations of the IMU. 

The experiments also showed that the IMU yields more 

accurate results in Yaw motion, with or without small 

inclinations along other axes, compared to Roll and Pitch 

motions. 

The next section of the paper required the understanding of 

Kalman filtering and its applications in state estimation. Using 

previous test flight data, simulations were done to estimate 

position, velocity and acceleration of the helicopter. Kalman 

filtering algorithms were implemented using only IMU data as 

well as both GPS and IMU data. It was found that Kalman 

filters do not work when only IMU data is measured and this 

was theoretically verified using the concept of observability. 

This was followed by comparing two models – constant 

acceleration and constant jerk while considering both GPS and 

IMU data. It was found that both models showed good 

estimations with constant jerk being a better approximation of 

the real world model. These inferences can be drawn even for Y 

axis parameters as the results were similar for both X axis and 

Y axis estimates. The paper presents only the linear Kalman 

filter implementation which is a relatively simple math model. 

Further studies will be carried out to estimate position using 

other sophisticated models like extended Kalman filter. 
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