Current Trends in Telecommunication Maintenance: Focus on Fiber Optic Infrastructure

Muhammad Riza Nurtam, Eko Santoso, Rizky Andrika, Agus Budiyono, Ary Setijadi Prihatmanto, Reza Dharmakusuma, Agung Harsoyo

Abstract


The telecommunication industry is experiencing rapid advancements, particularly in the deployment and maintenance of fiber optic infrastructure. This working paper explores the current trends in the maintenance of fiber optic networks, which are critical to supporting the high-speed, high-capacity demands of modern communication systems. Key areas of focus include innovative maintenance techniques, predictive maintenance through AI and machine learning, the role of remote monitoring systems, and the integration of automated tools for fault detection and repair. Additionally, the paper examines the challenges faced in maintaining fiber optic networks, such as physical damage, environmental factors, and the need for skilled technicians. By analyzing recent developments and best practices, this paper aims to provide valuable insights for industry professionals to enhance the reliability and efficiency of fiber optic maintenance.

Keywords


fiber optic maintenance, predictive maintenance, telecommunication infrastructure, automated fault detection.

Full Text:

PDF

References


Abdessalem, R. B., Panichella, A., Nejati, S., Briand, L. C., & Stifter, T. (2020, July). Automated repair of feature interaction failures in automated driving systems. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis (pp. 88-100).

Bappy, M. A., Ahmed, M., & Rauf, M. A. (2024). Exploring the Integration of Informed Machine Learning in Engineering Applications: A Comprehensive Review. Manam and Rauf, Md Abdur, Exploring the Integration of Informed Machine Learning in Engineering Applications: A Comprehensive Review (February 19, 2024).

Braun, J. E. (2003). Automated fault detection and diagnostics for vapor compression cooling equipment. J. Sol. Energy Eng., 125(3), 266-274.

Cardoso, D., & Ferreira, L. (2020). Application of predictive maintenance concepts using artificial intelligence tools. Applied Sciences, 11(1), 18.

Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. D. P., Basto, J. P., & Alcalá, S. G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024.

Cattani, G. (2006). Technological pre-adaptation, speciation, and emergence of new technologies: how Corning invented and developed fiber optics. Industrial and Corporate Change, 15(2), 285-318.

Channi, H. K., & Kumar, R. (2021). The role of smart sensors in smart city. In Smart Sensor Networks: Analytics, Sharing and Control (pp. 27-48). Cham: Springer International Publishing.

Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), 8211.

Durairajan, R., Barford, P., Sommers, J., & Willinger, W. (2015, August). InterTubes: A study of the US long-haul fiber-optic infrastructure. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication (pp. 565-578).

Einabadi, B., Baboli, A., & Ebrahimi, M. (2019). Dynamic Predictive Maintenance in industry 4.0 based on real time information: Case study in automotive industries. IFAC-PapersOnLine, 52(13), 1069-1074.

Gilabert, E., & Arnaiz, A. (2006). Intelligent automation systems for predictive maintenance: A case study. Robotics and Computer-Integrated Manufacturing, 22(5-6), 543-549.

Glisic, B., & Inaudi, D. (2007). Fibre optic methods for structural health monitoring. John Wiley & Sons.

Hermansa, M., Kozielski, M., Michalak, M., Szczyrba, K., Wróbel, Ł., & Sikora, M. (2021). Sensor-based predictive maintenance with reduction of false alarms—A case study in heavy industry. Sensors, 22(1), 226.

Hudaib, A. A., & Fakhouri, H. N. (2016). An automated approach for software fault detection and recovery. Communications and Network, 8(03), 158.

Jan, F., Min-Allah, N., & Düştegör, D. (2021). Iot based smart water quality monitoring: Recent techniques, trends and challenges for domestic applications. Water, 13(13), 1729.

Kim, T. H. (2023). Analysis of optical communications, fiber optics, sensors and laser applications. J. Mach. Comput, 3(2), 115-125.

Kim, W., & Katipamula, S. (2018). A review of fault detection and diagnostics methods for building systems. Science and Technology for the Built Environment, 24(1), 3-21.

Landsbergen, D., Shiang, J., & Byrnes, P. (1994). Fiber optic highways and network bridges: Planning for the telecommunications infrastructure needs of the city in the 21st century. Telematics and Informatics, 11(3), 255-274.

Lanticq, V., Taillade, F., Gabet, R., & Delepine-Lesoille, S. (2009). Distributed optical fibre sensors for Structural Health Monitoring: Upcoming challenges. INTECH Open Access Publisher.

Lee, C. K. M., Cao, Y., & Ng, K. H. (2017). Big data analytics for predictive maintenance strategies. In Supply Chain Management in the Big Data Era (pp. 50-74). IGI Global.

Lee, W. J., Wu, H., Yun, H., Kim, H., Jun, M. B., & Sutherland, J. W. (2019). Predictive maintenance of machine tool systems using artificial intelligence techniques applied to machine condition data. Procedia Cirp, 80, 506-511.

Li, H., & Braun, J. E. (2007). Economic Evaluation of Benefits Associated with Automated Fault Detection and Diagnosis in Rooftop Air Conditioners. Ashrae Transactions, 113(2).

Li, H., & Braun, J. E. (2007). Economic Evaluation of Benefits Associated with Automated Fault Detection and Diagnosis in Rooftop Air Conditioners. Ashrae Transactions, 113(2).

Lu, B., Durocher, D. B., & Stemper, P. (2009). Predictive maintenance techniques. IEEE Industry Applications Magazine, 15(6), 52-60.

Ma, P., Cheng, H., Zhang, J., & Xuan, J. (2020). Can this fault be detected: A study on fault detection via automated test generation. Journal of Systems and Software, 170, 110769.

Mehrani, E., Ayoub, A., & Ayoub, A. (2009). Evaluation of fiber optic sensors for remote health monitoring of bridge structures. Materials and Structures, 42, 183-199.

Morris, A. C., Ibrahim, Z., Moghraby, O. S., Stringaris, A., Grant, I. M., Zalewski, L., ... & Downs, J. (2023). Moving from development to implementation of digital innovations within the NHS: myHealthE, a remote monitoring system for tracking patient outcomes in child and adolescent mental health services. Digital Health, 9, 20552076231211551.

Morison, D. (2008, March). Remote monitoring of pipeline corrosion using fiber optic sensors. In NACE CORROSION (pp. NACE-08290). NACE.

Ochuba, N. A., Usman, F. O., Okafor, E. S., Akinrinola, O., & Amoo, O. O. (2024). Predictive analytics in the maintenance and reliability of satellite telecommunications infrastructure: a conceptual review of strategies and technological advancements. Engineering Science & Technology Journal, 5(3), 704-715.

Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., & Loncarski, J. (2018, July). Machine learning approach for predictive maintenance in industry 4.0. In 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA) (pp. 1-6). IEEE.

Pech, M., Vrchota, J., & Bednář, J. (2021). Predictive maintenance and intelligent sensors in smart factory. Sensors, 21(4), 1470.

Peters, K. J., & Inaudi, D. (2014). Fiber optic sensors for assessing and monitoring civil infrastructures. In Sensor technologies for civil infrastructures (pp. 121-158). Woodhead Publishing.

Selcuk, S. (2017). Predictive maintenance, its implementation and latest trends. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(9), 1670-1679.

Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2014). Machine learning for predictive maintenance: A multiple classifier approach. IEEE transactions on industrial informatics, 11(3), 812-820.

Tiddens, W., Braaksma, J., & Tinga, T. (2022). Exploring predictive maintenance applications in industry. Journal of quality in maintenance engineering, 28(1), 68-85.

Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M., & Elger, G. (2021). Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliability engineering & system safety, 215, 107864.

Turner, C. J., Emmanouilidis, C., Tomiyama, T., Tiwari, A., & Roy, R. (2019). Intelligent decision support for maintenance: an overview and future trends. International Journal of Computer Integrated Manufacturing, 32(10), 936-959.

van Lieshout, F., Yang, R., Stamenova, V., Agarwal, P., Cornejo Palma, D., Sidhu, A., ... & Shaw, J. (2020). Evaluating the implementation of a Remote-Monitoring program for chronic obstructive pulmonary disease: qualitative methods from a service design perspective. Journal of Medical Internet Research, 22(10), e18148.

Velasco, L., Piat, A. C., Gonzlez, O., Lord, A., Napoli, A., Layec, P., ... & Casellas, R. (2019). Monitoring and data analytics for optical networking: benefits, architectures, and use cases. IEEE Network, 33(6), 100-108.

Wang, J., Li, C., Han, S., Sarkar, S., & Zhou, X. (2017). Predictive maintenance based on event-log analysis: A case study. IBM Journal of Research and Development, 61(1), 11-121.

Wellbrock, G. A., Xia, T. J., Huang, M. F., Han, S., Chen, Y., Wang, T., & Aono, Y. (2023). Explore benefits of distributed fiber optic sensing for optical network service providers. Journal of Lightwave Technology.

Wen, Y., Rahman, M. F., Xu, H., & Tseng, T. L. B. (2022). Recent advances and trends of predictive maintenance from data-driven machine prognostics perspective. Measurement, 187, 110276.

Whelan, M. P., Albrecht, D., & Capsoni, A. (2002, June). Remote structural monitoring of the Cathedral of Como using an optical fiber Bragg sensor system. In Smart structures and materials 2002: smart sensor technology and measurement systems (Vol. 4694, pp. 242-252). SPIE.

Wijaya, H., Rajeev, P., & Gad, E. (2021). Distributed optical fibre sensor for infrastructure monitoring: Field applications. Optical Fiber Technology, 64, 102577.

Ye, Y., Yong, Z., & Han, D. (2020). Research on key technology of industrial artificial intelligence and its application in predictive maintenance. Acta Automatica Sinica, 46(10), 2013-2030.

Zadeh, R. (2004). Evolution of innovation: fiber optics and the communications industry (Doctoral dissertation, Massachusetts Institute of Technology).

Zonta, T., Da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889.


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.