Conceptual Design of High-Resolution X-band Unmanned Aerial Vehicle (UAV) On-board Synthetic Aperture Radar

Heein Yang, Good Fried Panggabean, Agus Hendra, Babag Purbantoro, Cahya Edi Santosa, Kaihei Namakura, Yuta Izumi, Josaphat Tetuko Sri Sumantyo, Kyeong-Rok Kim

Abstract


This paper presents the conceptual design of the unmanned aerial vehicle (UAV) on-board synthetic aperture radar (SAR) system. The SAR system is an active imaging sensor that uses microwave signal. The large scale UAV, JX-1 platform, is designed for land observation using SAR system. The proposed SAR system operates on X-band (8-10 GHz) with the bandwidth of 800 MHz and offers the high resolution images. The signal bandwidth defines the radar resolution, therefore, SAR system adopts the linearly frequency modulated (LFM) signal call chirp that is suitable for the wide bandwidth signal. In this paper, we implement the parallel direct digital frequency synthesizer (DDFS) chirp signal generator to generate the wide bandwidth signal with high stability using the field programmable gate array (FPGA). In addition, we analyze the specification, design constraints, and operational concepts of UAV. According to the operational concepts, we calculate the preliminary design parameters, geometry model, transmission signal properties, antenna design parameters, RF system parameters, and the signal-to-noise ratio (SNR). The contribution of this paper is the analysis on UAV operational concept, the design parameters of SAR system, the design of parallel DDFS chirp signal generator, and the verification of system design parameters for the realization of UAV on-board X-band high resolution SAR. The estimated spatial resolution of the proposed SAR system is 0.27 m by 0.23 m in range and azimuth directions, respectively.

Keywords


Synthetic Aperture Radar; Unmanned Aerial Vehicle; Direct Digital Frequency Synthesizer; Radar System Design;

Full Text:

PDF

References


K. Tomiyasu, “Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface,” Proceedings of the IEEE, Vol. 66, no. 5, pp. 563-583, 1978.

F. Argenti, A. Lapini, and L. Alparone, “A tutorial on speckle reduction in synthetic aperture radar images,” Geoscience and Remote Sensing Magazine, IEEE, Vol. 1, no. 3, pp. 6-35, 2013.

H. Yang, D. G. Lee, T.-H. Kim, J. T. Sri Sumantyo, and J.-H. Kim, “Semi-automatic coastline extraction methos using synthetic aperture radar images,” 2014 IEEE 16th International Conference on Advanced Communication Tehonology (ICACT), pp. 678-681, Feb. 2014.

Yohandri, V. Wissan, I. Firmansyah, P. Rizki Akbar, J. T. Sri Sumantyo, and H. Kuze, “Development of circuarly polarized array antenna for synthetic aperture radar sensor installed on UAV,” Progress In Electromagnetics Research C, Vol. 19, pp. 119-133, 2011.

S.-R. Lee, “Overview of KOMPSAT-5 program, mission, and system,”, 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 797-800, 2010.

M. Suess, S. Riegger, W. Pitz, and R. Werninghaus, “TerraSAR-X-design and performance,” in Proc. EUSAR, Vol. 2, pp. 49-52, 2002.

S. Buckreuss, W. Balzer, P. Muhlbauer, and R. Werninghaus, and W. Pitx, “The TerraSAR-X satellite project,”, 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3096-3098, 2003.

M. Virelli, A. Coletta, M. L. Battagliere, “ASI COSMO-SkyMed: Mission overview and data exploitation,” Geoscience and Remote Sensing Magazine, IEEE, Vol. 2, no. 2, pp. 64-66, 2014.

M. Xing, X. Jiang, R. Wu, F. Zhou, and Z. Bao, “Motion compensation for UAV SAR based on raw radar data,” Geoscience and Remote Sensing, IEEE Transactions on, IEEE, Vol. 47, no. 8, pp. 2870-2883, 2009.

P. A. Rozen, S. Hensley, K. Wheeler, G. Sadowy, T. Miller, S. Shaffer, R. Muellerschoen, C. Jones, H. Zebker, and S. Madsen, “UAVSAR: a new NASA airborne SAR system for science and technology research,” 2006 IEEE Conference on Radar, pp. 22-29, 2006.

E. Chapin, A. Chau, J. Chen, B. Heavey, S. Hensley, Y. Lou, R. Machuzak, and M. Moghaddam, “AirMOSS: An Airborne P-band SAR to measure root-zone soil moisture,” 2012 IEEE Conference on Radar, pp. 693-698, 2012.

M. Edwards, D. Madsen, G. Stringham, A. Margulis, B. Wicks, and D. G. Long, “microASAR: A Small, Robust LFM-CW SAR for Operation on UAVs and Small Aircraft,” 2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 514-517, 2008.

P. Steeghs, E. V. Halsema, and P. Hoogeboom, “MINISAR: a Miniature, Lightweight, Low Cost, Scalable SAR System,” Proceeing of CEOS SAR Calibration/Validation Workshop’01, pp. 125-128, 2011.

W. Jian, L. Jin-mei, Y. Yuan, and F. Jun, “Research on application of unmanned aerial vehicles borne SAR,” 2009 2nd IEEE Asian-Pacific Conference on Synthetic Aperture Radar (APSAR), pp. 60-63, 2009.

C. Bhattacharya, A. Roy, S. Navneet, A. Heddallikar, R. Pinto, “MicroSAR: Calibration of X-band high resolution FMCW synthetic aperture radar (SAR),” 2014 IEEE International Microwave and RF Confernece (IMARC), pp. 377-380, 2014.

P. Rizki Akbar, J. R. Sri Sumantyo, V. C. Koo, and H. Kuze, “Estimation of Data Memory Capacity for Circularly Polarized Synthetic Aperture Radar onboard Unmanned Aerial Vehicle Platform (CP-SAR UAV),” International Journal of Remote Sensing and Earth Sciences (IRESES), Vol. 7, pp. 24-35, 2010.

H. Saito and J. T. Sri Sumantyo, “Synthetic Aperture Radar for UAVs and Small Satellite,” The IEICE Transactions of Communications, Vol. J97-B, No. 11, pp. 992-998, 2014.

Kankaku, Y. Osawa, Y. Suzuki, and T. Watanabe, “The overview of the L-band SAR onboard ALOS-2,” Proceedings of Progress in Electromagnetics Research Symposium (PIERS), pp. 735-738, Aug 2009.

V. C. Koo, Y. K. Chan, G. Vetharatnam, M. Y. Chua, C. H. Lim, C.-S. Lim, C. C. Thum, T. S. Lim, Z. bin Ahmad, K. A. Mahmood, M. H. Bin Shahid, C. Y. Ang, W. Q. Tan, P. N. Tan, K. S. Yee, W. G. Cheaw, H. S. Boey, A. L. Choo, and B. C. Sew, “A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring,” Progress in Electromagnetics Research, Vol. 122, pp. 245-268, 2012.

L. C. Schroeder, D. H. Boggs, G. Dome, I. M. Halberstam, W. L. Jones, W. J. Pierson, and F. J. Wentz, “The relationship between wind vector and normalized radar cross section used to derive SEASAT‐A satellite scatterometer winds,” Journal of Geophysical Research: Ocean (1978-2012), Vol. 81, pp. 3297-3317, 1982.

M. Shimada, “Radiometric and geometric calibration of JERS-1 SAR,” Advances in Space Research, Vol. 11, no. 1, pp. 79-88, 1996.

M. Shimada, “Long-term stability of L-band normalized radar cross section of Amazon rainforest using the JERS-1 SAR,”, Canadian Journal of Remote Sensing, Vol. 31, no. 1, pp. 132-137, 2005.

J. Shin, K. Lee, and J. H. Kim, “Field test of KOMPSAT-5 calibration equipment,” 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 805-807, 2010.

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” Geoscience Remote Sensing Magazing, IEEE, Vol. 1, no. 1 pp. 6-43, 2013.

H. Yang, S. B. Ryu, H. C. Lee, S. G. Lee, S. S. Yong, and J.-H. Kim, “Implementation of DDS chirp signal generator on FPGA,” 2014 IEEE International Conference on Information and Communication Technology Convergence, pp. 956-959, Oct 2014.

H. Yang, J. H. An, H. W. Jung, and J.-H. Kim, “Circular polarization implementation on synthetic aperture radar,” 2014 IEEE International Conference on Information and Communication Technology Convergence, pp. 991-994, Oct 2014.

H. Yang, J. T. Sri Sumantyo, J. H. an, H. W. Jung, and J.-H. Kim, “Phase error compensation method using polynomial model for a direct digital synthezer based chirp signal generator,” 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 786-789, Jul 2015.

J. H. An, H. W. Jung, H. Yang, S. B. Ryu, H. C. Lee, S. G. Lee, S. S. Yong, and J.-H. Kim, “Development of chirp signal generator for micro satellite on-board synthetic aperture radar,” 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3663-3666, Jul 2015.

W. Q. Wang, Q. Peng, and J. Cai, “Diversified MIMO SAR waveform analysis and generation,” 2009 2nd IEEE Asian-Pacific Conference on Synthetic Aperture Radar (APSAR), pp. 270-273, 2009.

W. Q. Wang, Q. Peng, and J. Cai, “Waveform-diversity-based millimeter-wave UAV SAR remote sensing,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, no. 3, pp. 691-700, 2009.

N. Salerno, L. Simone, S. Cocchi, V. Viloni, M. Maffei, O. Cocciolollo, “Wideband arbitrary waveform generator for enhanced spaceborne SAR,” 2008 IEEE European Radar Conference (EURAD), pp. 416-419, 2008.

J.-B. Sung, S. Y. Kim, H. I. Lee, and B. T. Jeon, “Modeling and Simulation Techniques for Performance Analysis of High Resolution SAR System,” The Journal of Korean Institude of Electromagnetic Engineering and Science, Vol. 24, no. 4, pp. 558-565, 2013.

J.-B. Sung, S. Y. Kim, H. I. Lee, and B. T. Jeon, “Development and Performance Compensation of the Extremely Stable Transceiver System for High Resolution Wideband Active Phased Array Synthetic Aperture Radar,” The Journal of Korean Institude of Electromagnetic Engineering and Science, Vol. 21, no. 6, pp. 573-582, 2010.

S. Y. Kim and J. B. Sung, “Analysis on spectral regrowth of chirp bandwidth expansion technique in high‐resolution SAR system,” Microwave and Optical Technology Letters, Vol. 56, no. 2, pp. 400-403, 2014.

S. Y. Kim and N.-H. Myung, “Wideband linear frequency modulated waveform compensation using system predistortion and phase coefficients extraction method,” Microwave and Wireless Components Letters, IEEE, Vol. 17, no. 11, pp. 808-810, 2007.


Refbacks

  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »




Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.