Robust PID Controller for Quad-rotors

Addy Wahyudie, Tri Bagus Susilo, Hassan Noura


This study considers robust proportional integral derivative (PID) control for attitude stabilization of quad-rotors. The proposed method is designed for maintaining robustness against uncertainty of the system parameters and minimizing the control input for the quad-rotors. The closed-loop poles of the controlled system are placed within a region with specified decay rate and damping ratio for achieving specified transient response. The PID gains are tuned offline using theory. The robust control design problem is converted to optimization problem and solved using genetic algorithm. Finally, the proposed controller is simulated in the nominal and perturbations scenarios.


Attitude control; PID tuning; quad-rotors; robust control

Full Text:



F. Sharifi, M. Mirzaei, B. Gordon, and Y. Zhang, “Fault Tolerent Control of a Quadrotor UAV using Sliding Mode Control”, in Proc. of Conference on Control and Fault Tolerant Systems”, pp. 239-244, 2010.

R. Xu, “Sliding Mode Control of a Quadrotor Helicopter”, in Proc. of 45th IEEE Conference on Decision and Control, pp. 4987-4962, 2006.

A. Benallugue, A. Mokhtari, L. Fridman, “High-order Sliding-mode Observer for a Quadrotor UAV”, International Journal of Robust and Nonlinear Control, Vol 18, Issue 4-5, pp. 427-440, 2008.

L.Besnard, Y. B. Shtessel, and B. Landrum, “Control of a Quadrotor Vehicle using Sliding Mode Disturbance Observer”, in Proc. of American Control Conference, pp. 5230-5235, 2007.

S. Bouabdallah and R. Siegwart “Backstepping and Sliding Mode Technique Applied to an Indoor Micro Quadrotor”, in Proc. of International Conference in Robotic and Automation, pp. 2247-2252, 2005.

T. Madani, “Backstepping Control for a Quadrotor Helicopter”, in Proc. of International Conference on Intelligent Robotics and Systems, pp. 3255-3260, 2006.

T. Madani and A. Benallugue, “Control of a Quadrotor Mini-helicopter via Full State Backstepping Technique”, in Proc. of International Conference on Control and Decision, pp. 1515-1520, 2006.

G. V. Raffo, M. S. Ortega, F. R. Rubio, “Backstepping / Nonlinear H_∞ Control for Path Tracking of a Quadrotor Uanmmaned Aerial Vehicle”, in Proc. of American Control Conference, pp. 3356-3361, 2008.

A. Das, F. Lewis, K. Subbarao, “Backstepping Approach for Controlling a Quadrotor using Langange Form Dynamics”, Journal of Intelligent and Robotic System, Vol. 56, Issue 1-2, pp. 127-151, 2009.

V. Holger. "Nonlinear Control of a Quadrotor Micro-UAV using Feedback Linearization", in Proc. of International Conference on Mechatronics, pp. 1-6 2009.

A. Mokhtari, A. Benallegue, and B. Daachi, “Robust Feedback Linearization and〖GH〗_∞ Controller for a Quadrotor Unmanned Aerial Vehicle”, in Proc. of IEEE Conference of Intelligent Robots and Systems, pp. 1198-1203, 2005.

A. Benallegue, A. Mokhtari, and L. Fridman, “Feedback linearization and high order sliding mode observer for a quadrotor UAV”, in Proc. of IEEE International Workshop on Variable Structure Systems, pp. 365-372, 2006.

Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, “Adaptive control of quadrotor UAVs in the presence of actuator uncertainties”, in Proc. of AIAA, pp. 20-22, 2010.

S. Bouabdallah, “PID vs LQR Control Techniques Applied to an Indoor in Proc. of IEEE International Conference on Intelligent Robots and Systems, 2004.

G. M. Hoffman, H. Huang, S. L Waslander, and C. J. Tomlin, “Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment”, in Proc. of AIAA, Navigation and Control Congerence and Exhibit, 2007

Y. Zeng, Q. Jiang, and H. Jing, “PID vs MRAC Control Techniques Applied to a Quadrotor’s Attitude”, in Proc. of International conference of Instrumentation & Measurenment, Computer, Communication and Control, pp. 1086-1089, 2012.

J. Li and Y. Li, “Dynamic Analysis and PID Control for a Quadrotor”, in Proc. of International Conference on Mechatronics and Automation, pp. 573-578, 2011.

G. Szafranski and R. Czyba, “Diffrerent Approaches of PID Control UAV Type Quadrotor”, in Proc. of the International Micro Air Vehicles Conference, pp. 70-75, 2011.

A. Sharma and A. Barve, “Contrlling of Quad-rotor UAV Using PID Controller and Fuzzy Logic Controller”, International Journal of Electrical, Electronics and Computer Engineering, vol 1, no. 2, pp. 38-41, 2012.

T. Bresciani, “Identification and Control of a Quadrotor”, Master thesis, Lund University, 2008.

A. L. Salih, M. Moghavvemi, H. A. F. Mohamed, and K. S. Gaeid, “Flight PID Controller Design for a UAV Quadrotor”, Scientific Research and Essays, Vol. 5, No. 23, pp. 3660-3667, 2010.

M. T. Ho, “Non-Fragile PID Controller Design”, in Proc. of Conference on Decision and Control, pp. 4903-4908, 2000.

S. G. Vazquez and J. M. Valenzuela, “A New Nonlinear PI/PID Controller for Quadrotor Posture Regulation”, in Proc. of Electronics, Robotics and Automotive Mechanics Conference, pp. 642-647, 2010.

R. A. Garcia, F. R. Rubio, and M. G. Ortega, “Robust PID Control of the Quadrotor Helicopter”, in Proc. of IFAC Conference on Advances PID Control, 2012.

M. H. Amoozgar, A. Chamseddine, and Y. Zhang, “Fault-Tolerant Fuzzy Gain-scheduled PID for a Quadrotor Helicopter Testbed in the Precence of Actuator Faults”, in Proc. of IFAC Conference on Advances PID Control, 2012.

D.W. Gu, P. Hr. Petkov and M. M. Konstantinov, “Robust Control Design with MATLAB”, Springer, 2005.

C. S. A. Nandar, T. Hashiguchi, T. Goda,, “Design on the Coordinated Robust Controller of SMES and Blade Pitch for Smart Grid Power System”, IEEJ Transactions on Electrical and Electronic Engineering, Volume 7, Issue 4, pp. 355-362, 2012.

F.M. Callier and C.A. Desoer, “Linear System Theory”, Springer-Verlag, New York, 1991.

M. Morari and E. Zafiriou, “Robust Process Control”, Prentice-Hall, Englewood Cliffs, NJ, 1989.

C. Houck, J. Joines, and M. Kay, “A Genetic Algorithm for Function Otimization”, NCSU-IE TR 95-09, 1995.

K. Lee and M. El-Sharkawi, “Modern Heuristic Optimization Techniques”, Wiley-Interscience, New Jersey, USA, 2008.



Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.