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Abstract—Field Programmable Gate Array (FPGA) is susceptible
from hazardous radiation that leads to be in error state. In order to
avoid that condition, we apply a fault tolerance technique. Most of the
fault tolerances today are only using one mode, which means the fault
tolerance that is applied will run all the time without changing its
design. It does not consider the condition whether the hazard radiation
will occur more frequently or not. As researches have shown, in the
orbit, the hazard radiation happens in the South Atlantic Anomaly
(SAA)frequently. Therefore, this project creates a new methodology in
implementation of fault tolerance by using dual mode. When radiation
is happened frequently, we apply more robust fault tolerance; if not
frequent, we apply simple fault tolerance. A robust fault tolerance will
use more resources, and simple fault tolerance will use less resources.
Configuration in FPGA is done by Dynamic Partial Reconfiguration
(DPR), which means the transition from robust to simple fault
tolerance or vice versa is done while the system is running. This paper
will talk about the technical implementation of dual mode fault
tolerance by presenting systematically order and important aspect to
implement the design successfully. The paper shows a result that dual
mode fault tolerance can be configured in FPGA successfully.
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I. INTRODUCTION

HE effects of radiation cause errors in electronic circuits [1].

One such effect is the Single Event Effects (SEE), which
causes changes in the value of the memory / flip-flop (SEU) or
a combination of logic [1]. There are several methods to
prevent a fault in the system such as Triple Modular
Redundancy (TMR), Duplex System, and Error Detection and
Correction Code (EDAC) such as Hamming Code, Quasi
Cyclic Code, etc. The error mitigation is a very active research
issue at this time; many research teams are developing methods
for increasing reliability of FPGA based systems [2].

Subsystem satellite of On-Board Computer (OBC) must be
robust, because OBC has an important role in satellite.
According to [3], OBC have to monitor, control, acquire,
analyze, make decision, and execute a command. Because of its
important role, the OBC should have a good fault tolerance. In
satellite, resources are limited that we need to use the resources
efficiently. In our work, a fault tolerance system technique that
considers radiation environment was developed. Most of fault
tolerances today are only using one mode, which means the
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fault tolerance that is applied will run all the time without
changing its configuration. It does not consider the condition
whether the hazard radiation will occur more frequently or not.
Research has shown that in the orbit, hazard radiation happens
in South Atlantic Anomaly (SAA) frequently [4].

Online Checkers were applied in [5] where the module is
duplicated. However in the implementation, checker requires
more resources to cover the entire existing functionality and
becomes more complex. TMR with combination design was
applied in [6]. As quoted by the research in [7], in the orbit,
TMR design is not enough to mitigate the entire fault that
occurs; the fault can happen to two modules at the same time.
Fault Tolerance using nine redundancies that makes more
intensive in using the resources of FPGA was developed in [8].
Another approach of fault tolerance is found in [9] by
triplication the Logic Unit (ALU), along with using TMR.
Research in [10] proposed a design that has advantages in
efficiency of resource usage because the FPGA can be
reconfigured at runtime in accordance with the needs of the
system using DPR implementation. But it has not discussed
about the implementation of fault tolerance.

Knowing the state of the art of fault tolerances above, we
therefore create a new methodology in implementation of fault
tolerance by using dual mode. Dual mode design is expected to
be efficient in using resources and maintain the robustness.
This design considers two conditions: when the hazard
radiation occurs more frequently and less frequently. When it is
more frequent, we apply more robust fault tolerance; if it is not
frequent, we apply simple fault tolerance. For robust fault
tolerance, Five Modular Redundancy (FMR) was applied, and
for simple fault tolerance, Triple Modular Redundancy (TMR)
was applied. This paper will talk about the technical
implementation of dual mode fault tolerance, the tools, codes,
and important aspect to implement dual mode fault tolerance
successfully.

Il. DESIGN OF DUAL MODE FAULT TOLERANCE AND TOOLS

The basic idea is to dynamically change the fault tolerance
design while running so we create two designs of the fault
tolerance. First design uses TMR and the second design uses
FMR. When the hazard radiation is happening frequently we
then switch to use FMR, if not then we switch to use TMR.
Figure 1 is the design of the dual mode fault tolerance. In TMR
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state, module 4 and module 5 will be removed from FPGA
configuration if module 4 and module 5 exist in FMR state.

We use Virtex 6 FPGA from Xilinx. Integrated Software
Environment (ISE) is used to create a module using VHSIC
Hardware Description Language (VHDL) code. Xilinx
Platform Studio (XPS) is used to create Dynamic Partial
Reconfiguration (DPR) platform and add Intellectual Property
(IP). We use Microblaze processor to execute reconfiguration
while system is running, Xilinx Development Kit is used to
program the Microblaze processor using ¢ code, to decide when
the reconfiguration is done, and to Plan Ahead for Dynamic
Reconfiguration planning.

in Module 1
in Module 2
WOTER & L1118
in Module 3 ERROR
CETECTCR  |mem
To Mode Configurator
in Module 4
in Module 5

Figure 1The design of the dual mode fault tolerance

Switching between FMR and TMR is done automatically. It
is triggered by an error that occurs in the module consecutively.
We can know the output of the module so that we can compare
to each other which one is error. In this design, we setup with
five times, if Error Detector detects an error in some module
five times consecutively then the system moves to the FMR
mode, at here we consider there are many radiation occurs. If
not detected the error at five times every calculation of the
module will then move to the TMR mode. The settings of how
many errors are detected respectively can be changed according
to the needs of the system.

I1l. CREATE A MODULE USING VHSIC HARDWARE
DESCRIPTION LANGUAGE (VHDL) CoDE

To represent our model of fault tolerance, we create a
module that will handle the data more safely. We therefore give
an Error Detection and Correction (EDAC) functions in our
module. The module is created by the ISE Project Navigator
using VHDL code, and at the end, we generated Netlist file that
contains information (NGC) file. We only create one module
that can be used to reconfigure all modules in an FPGA. We
placed the component of the module in a user_logic.vhdl, it is
done when we are creating IP, then we initiated it five times.

XILINX ISE is used to create the module. Because it is easier
to test, we can focus only the VHDL code that we want to test.
The clock is an important part that is used to start the
processing. The Reset port is used to reset our variable data, to
ensure that all the data reverts back to the initial state when we
reset. Input Module is everything that coming to the module and
Output Module is the data result which has been processed.

The module should be able to handle the data properly. The
data can be an error, may be flip from the original data due to
radiation, so we apply the module by Error Detection and
Correction (EDAC). EDAC that we are using is Extended
Hamming Code (8,4). Hamming codes have a minimum
distance of 3, which means that the decoder can detect and
correct a single error, but it cannot distinguish a double bit error
of some codeword from a single bit error of a different
codeword [11]. Therefore, we use Extended Hamming Code
that can correct single bit errors and detect two-bit errors. Detail
about extended hamming code that is very nicely presented,
about how to construct and repair, from theory to technical
aspect that inspires this implementation can be found in [11]
and [9].

The scenario of the experiment is when the data is received
by the module, the module will encode the data by Extended
hamming code, from encode data the module will decode the
data. The outpute will be the encode data and the output1 will
be the decoding/actual data, the actual data is gotten from the
encoded data, because we want to make sure that the Hamming
code is properly working. To make the analysis easy, we create
variable in the hamming code processing. When the code is hit,
this variable is assigned immediately using signal that will
appear after the process is finished. Parity is calculated from
actual data that is coming to the module; encoding data is
nothing but the actual data plus parity. The output will be the 8
bits, four bits are actual data and the other 4 bits are parity.

The module is able to handle in reading the encoding
data/codeword. By calculating the syndrome from the encoding
data, we can know which position is an error. If the syndrome is
zero, it means no error; if syndrome in index '0" is zero and the
other index (1-3) is not zero, it means double error; and if
syndrome in index '0' is one, it means error is happening and
can be repaired [11].

IVV. CREATE A VOTER UNIT AND ERROR DETECTOR

Voter unit is a component that handles to select which data
that is correct; the voter unit uses TMR and FMR technique.
Switching from FMR to TMR or vice versa can be done while
the system is running. Ports that are used are shown in the
following VHDL code:

Port (

Clk : in STD_LOGIC;

Reset : in STD_LOGIC;
TmrState : in std_logic;
ModuleState
ErrorDetectorOutput: out std_logic_vector(4 downto 0);

: in std_logic_vector(4 downto @);



Inputl : in std_logic_vector(159 downto 9);
Input2 : in std_logic_vector(159 downto 9);
Input3 : in std_logic_vector(159 downto 9);
Input4 : in std_logic_vector(159 downto 9);
Input5 : in std_logic_vector(159 downto ©);

FtResultOut : out std_logic_vector(159 downto ©) );

TmrState is input that indicate whether in TMR mode or
FMR mode. Modulestate is indicating which module that is
active. ErrorDetectoroutput Will give information which
module that is an error, in the future will be used to repair the
module when it is in error. Inputl to Inputs is input data for
each module, as we instantiate the module in a five times each
instantiation will be mapped to this input. Last is FtResultout, it
is the final data that we expected to be the correct one.

The code inside the voter will check module state. Because
the voter can switch while the system is run, we make the data
in Inputa to be '1' or high all so that the voter condition will
automatically switch to TMR technique if Tmrstate is '1'.The
following VHDL code shows about this technique:

FtResult<=
(PR_Inputl and PR_Input2 and PR_Input3 ) or

(PR_Inputl and PR_Input2 and PR_Input4 ) or

(PR_Inputl and PR_Input2 and PR_Input5 ) or

(PR_Inputl and PR_Input3 and PR_Input4 ) or
)

(PR_Inputl and PR_Input3 and PR_Input5 or

(PR_Inputl and PR_Input4 and PR_Input5 ) or
(PR_Input2 and PR_Input3 and PR_Input4 ) or
(PR_Input2 and PR_Input3 and PR_Input5 ) or
(PR_Input2 and PR_Input4 and PR_Input5 )
)

(PR_Input3 and PR_Input4 and PR_Input5

or

Error detector will be responsible to detect and determine
which module that is erroneous after we know the correct value.
In other words, we can know which one that is not correct by
simply comparing the result and the input with each input from
each module. The following is the VHDL code that employs
this technique:

ErrorDetector(@) <= ' when FtResult = PR_Inputl else
' when FtResult = PR_Input2 else
' when FtResult = PR_Input3 else
' when FtResult = PR_Input4 else

' when FtResult = PR_Input5 else

ErrorDetector(1l) <=
ErrorDetector(2) <=
ErrorDetector(3) <=

SIS
R R B oR
.

ErrorDetector(4) <=

V. GENERATE THE NGCFILEOF THE MODULE UNIT AND
VOTER UNIT

After we finish from the VHDL code, we then analyze using
simulation. We add the new source by VHDL test bench, then
switch to simulation. After everything is run with the proper
data, we then generate the NGC file for our module. This NGC
file will be used by the XPS. We have to make sure when doing
Dynamic Reconfiguration is removing the Add I/O buffers.
This can be found in the Process Running Design by right click
process properties in the Synthesize, then uncheck the iobuf at
Xilinx Specific Option. If we do not do this stage, the error will
appear during implementation in the XPS project; we cannot
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serialize the same buffer. To make generating NGC easy and to
test the behavior before going to XPS, we can just make one
ISE project that contains Module Unit and Voter Unit VHDL;
those components will have Top Module. Top Module will do
the task as that in user_logic.vhd1l. We can generate the NGC
directly in this project by selecting the component either
Module Unit or Voter Unit, but we need to make the component
that is selected as Top Module.

VI. CREATE DYNAMIC PARTIAL RECONFIGURATION (DPR)
PLATFORM AND CREATE INTELLECTUAL PROPERTY (IP) IN THE
XPS PROJECT

When switching between modes and fixing the error module,
the dual mode fault tolerance must not interrupt the system
while running. Therefore we use DPR that is offered by Xilinx.
The technical documentation to achieve DPR from Xilinx can
be found in [13]. Here, we are stretching about the DPR system
that is related to achieving dual mode fault tolerance and some
parts that have not mentioned from the document.

By using, XPS we create a project that place our components
(voter unit and module unit), and create the structure of which
the dual mode fault tolerance will work. Microblaze processor
is added in the system assembly view, having a task to manage
when the DPR will be done and write the bit data to FPGA
RAM that contain the module unit.

Adding IP is not included in the DPR document, but is
relatively important to be successful in implementing DPR. The
document that talks about adding the IP can be found in the
[13]. The IP will handle about how to place our components
and communicate with each other. The components that we
have made are placed in the user_logic.vhdl. user_logic.vhdl
is a file that will be generated automatically by XPS when we
create an IP. user_logic.vhdl allows us to add our component
and map the ports according to our design. The important
aspect and short step that we have to do after adding the IP are
as the following.

Step 1: Adding the port in mpd file. If we want to connect our
IP to external port, we need to add the name of the port
in the file.

Rescanning the project. This makes our port that is
added in mpd file is shown in the Assembly View
under Ports Tab at the IP that is added.

Step 3: Making the ports that are shown to be external.

Step 4: Adding the port in the ucf file according to the name
that is shown in the most left column that has been
given.

Step 2:

Step 5: Adding a port in the "Name of IP".vhdl and then map
the port in user_logic.vhdl instantiation.

Step 6: In the user_logic.vhdl,adding the port in entity, then

finally we can use it.

Placing the component and map it in the user_logic.vhdl,
we add the components that we have created (module unit and
voter unit). Following is the VHDL that place the component in
the user_logic.vhdl:
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COMPONENT VoterUnit
PORT(

Clk : in STD_LOGIC;
in STD_LOGIC;
FmrOrTmrState
ModuleState: in std_logic_vector(4 downto 0);

Reset :
: in std_logic;

ErrorDetectorOutput: out std_logic_vector(4 downto
0);

Inputl : in std_logic_vector(159 downto 9);

Input2 : in std_logic_vector(159 downto 0);

Input3 : in std_logic_vector(159 downto 9);

Input4 : in std_logic_vector(159 downto ©);

Input5 : in std_logic_vector(159 downto ©);

FtResultOut : out std_logic_vector(159 downto ©)

)5
END COMPONENT;

COMPONENT ModuleUnit
PORT(

Clk : in STD_LOGIC;
in STD_LOGIC;
ModulInput: in std_logic_vector(3 downto 0);
ModulOutput®: out std_logic_vector(7 downto 0);
ModulOutputl: out std_logic_vector(3 downto ©)

Reset :

)5
END COMPONENT;

The DPR document does not mention to copy our NGC
files, but the components that are added should be available in
the implementation directory of the XPS project. We need to
copy manually the NGC files that have been created because to
enable DPR, we need to generate the BitStream from XPS.
Without those NGC files, the Generate BitStream will fail.
After Generate BitStream, asystem_bd file will be created; it is
used later when creating the system’sace file.

For component initiation, we can initiate the component as
many as we want.Module unit is initiated five times to enable
the FMR. In the initiation code, we map the port according to
the signal that related. Following is some initiations code that
we have created:

Inst_ml: ModuleUnit PORT MAP(
Clk => Bus2IP_Clk,
Reset => Bus2IP_Resetn,
ModulInput => InputToModulel(3 downto 0),\
ModulOutput® => OutputFromModulel(7 downto 9),
ModulOutputl=> OutputFromModulel(1l downto 8)
)

Inst_m2: ModuleUnit PORT MAP(
Clk => Bus2IP_Clk,

Reset => Bus2IP_Resetn,
ModulInput => InputToModule2(3 downto 9),
ModulOutput® => OutputFromModule2(7 downto ©),

ModulOutputl=> OutputFromModule2(11 downto 8)
)

Bus2IP_CIk is required to clock the component so that
component know when should work and work only is needed.
Inst_ m1 and Inst_m2 will be the portion for Dynamic Partial
Reconfiguration. We can remove the connection or establish
the connection of the module unit by making the instantiated
object as a dynamic partitioned part.

Mapping the output from each module to the input voter unit,
the voter should vote which one is the correct data from five
modules in FMR mode, and three modules in TMR mode, and
find the module that is faulty. Following is the code that maps
the output of voter unit:

InputToVoterl <= OutputFromModulel;
InputToVoter2 <= OutputFromModule2;
InputToVoter3 <= OutputFromModule3;
InputToVoter4 <= OutputFromModule4;
InputToVoter5 <= OutputFromModule5;

It is important to consider how the communication between
the processor and the IP. The IP will have a specific address
that will be used by the processor to read and write the data in a
32-bit memory location. When creating the IP, we have to
decide how many numbers of software accessible register, one
number is having 32-bit memory allocation. We assign the
output of the Voter Unit to this address so that we can analyze
the result by sending the data to a computer through RS232.
Here, we have two numbers of software accessible register so
when we want to access the data we need to know the
BASEADDR of our IP. Following is the Memory Register
Mapping that is reference from Xilinx automation code.
C_BASEADDR is the IP address from IP creation:

"10" . C_BASEADDR + 0x0
"o1" C_BASEADDR + 0x4

VIl. PROGRAM THEMICROBLAZEUSING C CODE IN XILINX
DeVELOPMENT KIT (SDK) To OPERATE A DPR

After generating the Bitstraem from XPS, we are exporting
the design to SDK. This will give prompt to use an SDK
application to put our C code and all the Bitstream will be
exported to our SDK project. We can find the ¢ code template
to do DPR in the UG744_design_files.zip that is informed in
the DPR Document from Xilinx. We add the functionality to
check the module for error and then do reconfiguration.
Following is the code to check the module that is an error:

intErrorModule=Xil_In32(XPAR_DUALMODEFT_@_BASEADDR);

Xil_In32 function is used to perform an input operation for a
32-bit memory location by reading from the specified address
and returning the value read from that address. Here we read at
the address XPAR_DUALMODEFT @ BASEADDR Where our IP is
residing. The following VHDL code informs that Error
Detector data is placed in the first (*1e") accessible register:

caseslv_reg_read_sel is
when "10" => slv_ip2bus_data(4 downto 0) <=



ErrorDetectorOutput (4 downto @);
when "@1" => slv_ip2bus_data(1l downto 0) <=
FtResult (11 downto 0);
when others => slv_ip2bus_data <= (others => '0');
end case;

If we want to access the FtResult, we need to add the
address of 4 because it is placed in the second ("e1") accessible
register, which will be xPAR_DUALMODEFT_o_BASEADDR+4 as Xilinx
has described how to access this memory data.

To see the result of our application and to make sure
everything is configured properly before we go to the next step
in Plan Ahead, we can test the project by loading the bit into the
device using of Xilinx Tool because Plan Ahead will consume
much times. Based on the experience that we have done, we
will be able to get the system.ace correctly if we use .elf file
from release, to get.e1f from release, we need to Build All the
application projects.

EAPROJECTV15t5tage\PR_Project_03WXPS
\implementationisystem_bd

EAZOUTPUT\Bit\module bit

EAPROJECT\15t5tage\PR_Project_ 0\SDK_Export
\Application\Release\Application.elf

Launch and Copy

Generate

CD EAZOUTPUT

=

dataZmem -bm EAPROJECTN15t5tage'\PR_Project_03WPS\umplementation
\system_bd -bt EAZOUTPUT\Bitymodule.bit -bd EAPROJECT\15t5tage
\PR_Project_03\SDK_Export\Application\Release\Application.elf tag microblaze_0 -
o b download.bit

xmd -tcl genace.tcl -jprog -target mdm -hw download.bit -board ml&05 -ace
system.ace

Figure 2 Creating an image file form

VIIl. DESIGN DYNAMIC RECONFIGURATION

USING PLAN AHEAD

The next step is creating the project for the Dynamic
Reconfiguration floor plan using Plan Ahead. The important
stages we need to care are:

1) In the Plan Ahead, we import all the NGC files that have
been created in the XPS to the project. NGC files from our
component (Voter Unit and Module Unit) are not included,
but they will be included later when we make
reconfigurable module. There is opportunity to load the
NGC files then.

2) Setting partition for the netlist or NGC files. When setting
the partition, we have option either to make the partition is
filled by blank module or by available netlistfile. We create
two files: blank and available netlist. Those will be our bit
file to be written up in the RAM FPGA during DPR
processing.
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3) Placing the reconfiguration module in the device in FPGA.
There will be available FPGA area form that can be drag
and drop when we select the Set PblockSize.

4) Creating the strategies. This stage needs to be done
carefully when adding data inMore Optionsfield in DPR
Document using. ./../../edk/implementation/system.bmm.
Based on our experience, it cannot be done so we need to
change to exact directory, for example:-bm
E:\PROJECT\\XPS\implementation\system.bmm.

5) Creating the Design Runs to make the bit generation plan.

IX. CREATING AN IMAGE FILE

Image files contain data reconfiguration for FPGA. Image
files will be placed in the Compact flash, they are system.ace
and partial reconfiguration bit files. To make easy in the
process in creating the image files, because we are going to
generate the image files for many times: for testing,
re-evaluating, and fixing purposes, we create the application to
do this stage using C#. Figure 2 is the application form that will
generate the system.ace image easily. Three important files that
we have to have are system_bd, module (static file), and the elf
file.

X. TESTING THE DUAL MODE FAULT TOLERANCE

This chapter will discuss the testing, some comparison with
other fault tolerances, and discussion about fault tolerance
performance under the proposed dual mode approach. We
classify them into four topics:

1. Measurement with respect to efficiency: By knowing the
resource usage by fault tolerance, it will be known how
much efficient of the design. The measurement calculation
is done by calculating the power that is used by the FPGA
core to the amount of resource used by the FPGA.

2. Speed measurement: To measure the speed of mitigation
process for error module.

3. Testing dynamic configuration from TMR to FMR or vice
versa: The system should be able to shift from TMR to the
FMR mode or vice versa without disturbing the state of the
system. This is to determine whether a system fault
tolerance that is made can switch automatically.

4. Testing the robustness by giving Fault Injection: This stage is
the most decisive test. By providing fault injection to the
system, we will know the robustness of the system.

Measurement with respect to efficiency: The greater in using
the resources on the FPGA, the greater Power is needed.
Calculations were performed using the Xilinx Power Estimator
(XPE) for Virtex 6. Figure 3 is a resource calculation on a
single module using XPE if a module consists of 1573 LUTs
Logic, 103 Distributed RAM, and 1456 flip-flop.

From the results of power calculation, we require 0.010 W
for each module. FMR will be activated 20% of the total time.
20% is an estimation of the SAA location obtained on the
location of the earth. Equations (1) to (7) are the calculation of
the efficiency in one orbit (100 minutes/orbit) when satellite
passing the SAA location:
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. 80 . TaBLE | Comparison between some fault tolerances
TMR Time = 100 x 100~ 80 minutes (1) in using resources
= 4800 seconds Technique Power Efficiency
Power FMR = 0.01 x5 =0.05W ) TMR without mitigation 0.03 w Not there
FMR Energy = FMR Power x 4800 seconds (3) TMR with mitigation 0.03w Not there
= 0.05x 4800 = 240 W's (4) NMR without mitigation 0.09 w Not there
TMR Power = 0.01 x3 =0.03W (5) Dual mode (FMR and TMR) TMR: 0.03 W )
TMR Energy = TMR Power X 4800 seconds (6) \(Agfgprgéggﬁg?gn) FMR: 005w | 90 Wsper orbit
= 0.03 x 4800 = 144 W's @)
module1 100.0 | 1456 0 103 1573 12.5% 3.00 12.5 0.010
module2 | 100.0 | 1456 0 103 1573 12.5% 3.00 12.5 0.010
module3 | 100.0 | 1456 0 103 1573 12.5% 3.00 12.5 0.010
module4 | 100.0 | 1456 0 103 1573 12.5% 3.00 12.5 0.010
moduled | 100.0 | 1456 0 103 1573 12.5% 3.00 12.5 0.010

Figure 3 Power calculation in each module using XPE

TABLE | is a comparison between some fault tolerances in
using resources. It shows that the proposed design has
Efficiency: 240 W-s - 144 = 96 W -s per orbit.

TaBLE |1 Speed of mitigation process to error module

Module - Size - . S_p_eed
In Kilobyte In Bit (in millisecond)
1 128 1024000 224.93
2 120 960000 209.66
3 81 648000 141.59
4 128 1024000 225.00
5 142 1136000 261.57
Speed measurement. Microblaze processor speed is

100MHz. TABLE | is a comparison between some fault
tolerances in using resources. It shows that the proposed design
has Efficiency: 240 W-s - 144 = 96 W -s per orbit.

TaABLE Il shows the speed in performing recovery to error
module. The speed shows us that each 1 KB requires 1.75 ms;
this speed is sufficient for our OBC. The speed is includes
reading non-volatile file on a Compact Flash memory and
writing to the ICAP port. The size of each module varies
depending on the amount of resources. Although required
resource is the same, the size of file is different due to the
variation when drawing using pblock tool in Plan Ahead.

Testing dynamic configuration from TMR to FMR: In this
testing, we want to know whether the designed system can
switch from TMR to FMR automatically. Switch from TMR to

FMR is done when error in a module is detected 5 times
consecutively.

Figure 4 shows fault is injected to the module 5 times
consecutively after which the system recovers the faulty
module immediately. Then after five times error was detected,
the system added module 4 and module 5; if module 4 and
module 5 is activated, it is in FMR state.

Testing dynamic configuration from TMR to FMR: In this
testing we want to know whether the system can switch from
FMR to TMR automatically. Switch from FMR to TMR is done
when free error in more than five consecutive calculations
occurs.

Figure 5 shows a situation after 6 consecutive calculations
without error. In Blank field, module 4 and 5 are removed or
made to be blank. If module 4 and 5 is removed, we considered
itisin TMR state. After switch to TMR state, we send again the
data, and we see the data still can be encoded and decoded.

Testing the robustness by giving Fault Injection: In this
testing we would like to know, whether the system work
correctly or not when many faults are injected to the system.
Figure 6 shows part of injection which is made.

When fault is injected, we send the data to the system
immediately before the system makes the recovery. After that,
we allow the system to recover the erroneous module. This is
done in more than 1 hour with more than 3600 times
reconfiguration using DPR technique. The data is still valid; the
system can decode and encode the data which is sent to the
system correctly.
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Dual Mode fault tolerance for FPGA has been implemented
successfully, the transition from FMR mode to TMR or vice
versa can be done without interrupting the system which is run,
this proves that we can make another fault tolerant system with
various designs, not only dual mode. Voter unit can select the
correct data, whether in FMR or TMR mode, and the error
detector can detect the module that is an error. Each module can
calculate the Ext Hamming Code with having same output or

CONCLUSION
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result to each other. We presented systematical steps to
successfully implement Dual Mode Fault Tolerance, and
showed the important aspects to achieve this project.

The efficiency using dual mode is about 96 W -s per orbit
when satellite passing SAA location. Fault injection is done for
more than 1 hour with more than 3600 times reconfiguration,
and the system still worked correctly without any crash or hang,
and the system can encode/decode the data correctly.
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