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Abstract—Field Programmable Gate Array (FPGA) is susceptible 

from hazardous radiation that leads to be in error state. In order to 

avoid that condition, we apply a fault tolerance technique. Most of the 

fault tolerances today are only using one mode, which means the fault 

tolerance that is applied will run all the time without changing its 

design. It does not consider the condition whether the hazard radiation 

will occur more frequently or not. As researches have shown, in the 

orbit, the hazard radiation happens in the South Atlantic Anomaly 

(SAA)frequently. Therefore, this project creates a new methodology in 

implementation of fault tolerance by using dual mode. When radiation 

is happened frequently, we apply more robust fault tolerance; if not 

frequent, we apply simple fault tolerance. A robust fault tolerance will 

use more resources, and simple fault tolerance will use less resources. 

Configuration in FPGA is done by Dynamic Partial Reconfiguration 

(DPR), which means the transition from robust to simple fault 

tolerance or vice versa is done while the system is running. This paper 

will talk about the technical implementation of dual mode fault 

tolerance by presenting systematically order and important aspect to 

implement the design successfully. The paper shows a result that dual 

mode fault tolerance can be configured in FPGA successfully. 

Keywords—FPGA, Fault Tolerance, Dynamic Partial 

Reconfiguration. 

I. INTRODUCTION 

HE effects of radiation cause errors in electronic circuits [1]. 

One such effect is the Single Event Effects (SEE), which 

causes changes in the value of the memory / flip-flop (SEU) or 

a combination of logic [1]. There are several methods to 

prevent a fault in the system such as Triple Modular 

Redundancy (TMR), Duplex System, and Error Detection and 

Correction Code (EDAC) such as Hamming Code, Quasi 

Cyclic Code, etc. The error mitigation is a very active research 

issue at this time;  many research teams are developing methods 

for increasing reliability of FPGA based systems [2]. 

Subsystem satellite of On-Board Computer (OBC) must be 

robust, because OBC has an important role in satellite. 

According to [3], OBC have to monitor, control, acquire, 

analyze, make decision, and execute a command. Because of its 

important role, the OBC should have a good fault tolerance. In 

satellite, resources are limited that we need to use the resources 

efficiently. In our work, a fault tolerance system technique that 

considers radiation environment was developed. Most of fault 

tolerances today are only using one mode, which means the 

fault tolerance that is applied will run all the time without 

changing its configuration. It does not consider the condition 

whether the hazard radiation will occur more frequently or not. 

Research has shown that in the orbit, hazard radiation happens 

in South Atlantic Anomaly (SAA) frequently [4]. 

Online Checkers were applied in [5] where the module is 

duplicated. However in the implementation, checker requires 

more resources to cover the entire existing functionality and 

becomes more complex. TMR with combination design was 

applied in [6]. As quoted by the research in [7], in the orbit, 

TMR design is not enough to mitigate the entire fault that 

occurs; the fault can happen to two modules at the same time. 

Fault Tolerance using nine redundancies that makes more 

intensive in using the resources of FPGA was developed in [8]. 

Another approach of fault tolerance is found in [9] by 

triplication the Logic Unit (ALU), along with using TMR. 

Research in [10] proposed a design that has advantages in 

efficiency of resource usage because the FPGA can be 

reconfigured at runtime in accordance with the needs of the 

system using DPR implementation. But it has not discussed 

about the implementation of fault tolerance. 

Knowing the state of the art of fault tolerances above, we 

therefore create a new methodology in implementation of fault 

tolerance by using dual mode. Dual mode design is expected to 

be efficient in using resources and maintain the robustness. 

This design considers two conditions: when the hazard 

radiation occurs more frequently and less frequently. When it is 

more frequent, we apply more robust fault tolerance; if it is not 

frequent, we apply simple fault tolerance. For robust fault 

tolerance, Five Modular Redundancy (FMR) was applied, and 

for simple fault tolerance, Triple Modular Redundancy (TMR) 

was applied. This paper will talk about the technical 

implementation of dual mode fault tolerance, the tools, codes, 

and important aspect to implement dual mode fault tolerance 

successfully. 

II. DESIGN OF DUAL MODE FAULT TOLERANCE AND TOOLS 

The basic idea is to dynamically change the fault tolerance 

design while running so we create two designs of the fault 

tolerance. First design uses TMR and the second design uses 

FMR. When the hazard radiation is happening frequently we 

then switch to use FMR, if not then we switch to use TMR. 

Figure 1 is the design of the dual mode fault tolerance. In TMR Corresponding author: Haryono (e-mail:haryono81@gmail.com).  
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state, module 4 and module 5 will be removed from FPGA 

configuration if module 4 and module 5 exist in FMR state. 

We use Virtex 6 FPGA from Xilinx. Integrated Software 

Environment (ISE) is used to create a module using VHSIC 

Hardware Description Language (VHDL) code. Xilinx 

Platform Studio (XPS) is used to create Dynamic Partial 

Reconfiguration (DPR) platform and add Intellectual Property 

(IP). We use Microblaze processor to execute reconfiguration 

while system is running, Xilinx Development Kit is used to 

program the Microblaze processor using c code, to decide when 

the reconfiguration is done, and to Plan Ahead for Dynamic 

Reconfiguration planning. 

 

Figure 1The design of the dual mode fault tolerance 

Switching between FMR and TMR is done automatically. It 

is triggered by an error that occurs in the module consecutively. 

We can know the output of the module so that we can compare 

to each other which one is error. In this design, we setup with 

five times, if Error Detector detects an error in some module 

five times consecutively then the system moves to the FMR 

mode, at here we consider there are many radiation occurs. If 

not detected the error at five times every calculation of the 

module will then move to the TMR mode. The settings of how 

many errors are detected respectively can be changed according 

to the needs of the system. 

III. CREATE A MODULE USING VHSIC HARDWARE 

DESCRIPTION LANGUAGE (VHDL) CODE 

To represent our model of fault tolerance, we create a 

module that will handle the data more safely. We therefore give 

an Error Detection and Correction (EDAC) functions in our 

module. The module is created by the ISE Project Navigator 

using VHDL code, and at the end, we generated Netlist file that 

contains information (NGC) file. We only create one module 

that can be used to reconfigure all modules in an FPGA. We 

placed the component of the module in a user_logic.vhdl, it is 

done when we are creating IP, then we initiated it five times. 

XILINX ISE is used to create the module. Because it is easier 

to test, we can focus only the VHDL code that we want to test. 

The clock is an important part that is used to start the 

processing. The Reset port is used to reset our variable data, to 

ensure that all the data reverts back to the initial state when we 

reset. Input Module is everything that coming to the module and 

Output Module is the data result which has been processed. 

The module should be able to handle the data properly. The 

data can be an error, may be flip from the original data due to 

radiation, so we apply the module by Error Detection and 

Correction (EDAC). EDAC that we are using is Extended 

Hamming Code (8,4). Hamming codes have a minimum 

distance of 3, which means that the decoder can detect and 

correct a single error, but it cannot distinguish a double bit error 

of some codeword from a single bit error of a different 

codeword [11]. Therefore, we use Extended Hamming Code 

that can correct single bit errors and detect two-bit errors. Detail 

about extended hamming code that is very nicely presented, 

about how to construct and repair, from theory to technical 

aspect that inspires this implementation can be found in [11] 

and [9]. 

The scenario of the experiment is when the data is received 

by the module, the module will encode the data by Extended 

hamming code, from encode data the module will decode the 

data. The output0 will be the encode data and the output1 will 

be the decoding/actual data, the actual data is gotten from the 

encoded data, because we want to make sure that the Hamming 

code is properly working. To make the analysis easy, we create 

variable in the hamming code processing. When the code is hit, 

this variable is assigned immediately using signal that will 

appear after the process is finished. Parity is calculated from 

actual data that is coming to the module; encoding data is 

nothing but the actual data plus parity. The output will be the 8 

bits, four bits are actual data and the other 4 bits are parity. 

The module is able to handle in reading the encoding 

data/codeword. By calculating the syndrome from the encoding 

data, we can know which position is an error. If the syndrome is 

zero, it means no error; if syndrome in index '0' is zero and the 

other index (1-3) is not zero, it means double error; and if 

syndrome in index '0' is one, it means error is happening and 

can be repaired [11]. 

IV. CREATE A VOTER UNIT AND ERROR DETECTOR 

Voter unit is a component that handles to select which data 

that is correct; the voter unit uses TMR and FMR technique. 

Switching from FMR to TMR or vice versa can be done while 

the system is running. Ports that are used are shown in the 

following VHDL code: 

Port  (  

Clk : in STD_LOGIC; 

Reset : in STD_LOGIC; 

TmrState  : in std_logic;       

ModuleState : in std_logic_vector(4 downto 0); 

ErrorDetectorOutput : out std_logic_vector(4 downto 0); 
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Input1 : in  std_logic_vector(159 downto 0); 

Input2 : in  std_logic_vector(159 downto 0); 

Input3 : in  std_logic_vector(159 downto 0); 

Input4 : in  std_logic_vector(159 downto 0); 

Input5 : in  std_logic_vector(159 downto 0); 

FtResultOut : out  std_logic_vector(159 downto 0)  ); 

TmrState is input that indicate whether in TMR mode or 

FMR mode. ModuleState is indicating which module that is 

active. ErrorDetectorOutput will give information which 

module that is an error, in the future will be used to repair the 

module when it is in error. Input1 to Input5 is input data for 

each module, as we instantiate the module in a five times each 

instantiation will be mapped to this input. Last is FtResultOut, it 

is the final data that we expected to be the correct one. 

The code inside the voter will check module state. Because 

the voter can switch while the system is run, we make the data 

in Input4 to be '1' or high all so that the voter condition will 

automatically switch to TMR technique if TmrState is '1'.The 

following VHDL code shows about this technique: 

FtResult<=  

(PR_Input1 and PR_Input2 and PR_Input3 ) or  

   (PR_Input1 and PR_Input2 and PR_Input4 ) or  

   (PR_Input1 and PR_Input2 and PR_Input5 ) or 

   (PR_Input1 and PR_Input3 and PR_Input4 ) or 

   (PR_Input1 and PR_Input3 and PR_Input5 ) or 
  

   (PR_Input1 and PR_Input4 and PR_Input5 ) or 

   (PR_Input2 and PR_Input3 and PR_Input4 ) or 

   (PR_Input2 and PR_Input3 and PR_Input5 ) or 

   (PR_Input2 and PR_Input4 and PR_Input5 ) or 

   (PR_Input3 and PR_Input4 and PR_Input5 );  

Error detector will be responsible to detect and determine 

which module that is erroneous after we know the correct value. 

In other words, we can know which one that is not correct by 

simply comparing the result and the input with each input from 

each module. The following is the VHDL code that employs 

this technique: 

ErrorDetector(0) <=  '0' when FtResult = PR_Input1 else '1'; 

ErrorDetector(1) <=  '0' when FtResult = PR_Input2 else '1'; 

ErrorDetector(2) <=  '0' when FtResult = PR_Input3 else '1'; 

ErrorDetector(3) <=  '0' when FtResult = PR_Input4 else '1'; 

ErrorDetector(4) <=  '0' when FtResult = PR_Input5 else '1'; 

V. GENERATE THE NGCFILEOF THE MODULE UNIT AND 

VOTER UNIT 

After we finish from the VHDL code, we then analyze using 

simulation. We add the new source by VHDL test bench, then 

switch to simulation. After everything is run with the proper 

data, we then generate the NGC file for our module. This NGC 

file will be used by the XPS. We have to make sure when doing 

Dynamic Reconfiguration is removing the Add I/O buffers. 

This can be found in the Process Running Design by right click 

process properties in the Synthesize, then uncheck the iobuf at 

Xilinx Specific Option. If we do not do this stage, the error will 

appear during implementation in the XPS project; we cannot 

serialize the same buffer. To make generating NGC easy and to 

test the behavior before going to XPS, we can just make one 

ISE project that contains Module Unit and Voter Unit VHDL; 

those components will have Top Module. Top Module will do 

the task as that in user_logic.vhdl. We can generate the NGC 

directly in this project by selecting the component either 

Module Unit or Voter Unit, but we need to make the component 

that is selected as Top Module. 

VI. CREATE DYNAMIC PARTIAL RECONFIGURATION (DPR) 

PLATFORM AND CREATE INTELLECTUAL PROPERTY (IP) IN THE 

XPS PROJECT 

When switching between modes and fixing the error module, 

the dual mode fault tolerance must not interrupt the system 

while running. Therefore we use DPR that is offered by Xilinx. 

The technical documentation to achieve DPR from Xilinx can 

be found in [13]. Here, we are stretching about the DPR system 

that is related to achieving dual mode fault tolerance and some 

parts that have not mentioned from the document. 

By using, XPS we create a project that place our components 

(voter unit and module unit), and create the structure of which 

the dual mode fault tolerance will work. Microblaze processor 

is added in the system assembly view, having a task to manage 

when the DPR will be done and write the bit data to FPGA 

RAM that contain the module unit. 

Adding IP is not included in the DPR document, but is 

relatively important to be successful in implementing DPR. The 

document that talks about adding the IP can be found in the 

[13]. The IP will handle about how to place our components 

and communicate with each other. The components that we 

have made are placed in the user_logic.vhdl. user_logic.vhdl 

is a file that will be generated automatically by XPS when we 

create an IP. user_logic.vhdl allows us to add our component 

and map the ports according to our design. The important 

aspect and short step that we have to do after adding the IP are 

as the following. 

Step 1: Adding the port in mpd file. If we want to connect our 

IP to external port, we need to add the name of the port 

in the file. 

Step 2: Rescanning the project. This makes our port that is 

added in mpd file is shown in the Assembly View 

under Ports Tab at the IP that is added. 

Step 3: Making the ports that are shown to be external. 

Step 4: Adding the port in the ucf file according to the name 

that is shown in the most left column that has been 

given. 

Step 5: Adding a port in the "Name of IP".vhdl and then map 

the port in user_logic.vhdl instantiation. 

Step 6: In the user_logic.vhdl,adding the port in entity, then 

finally we can use it. 

Placing the component and map it in the user_logic.vhdl, 

we add the components that we have created (module unit and 

voter unit). Following is the VHDL that place the component in 

the user_logic.vhdl: 
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COMPONENT VoterUnit 

PORT( 

 Clk : in STD_LOGIC; 

 Reset : in STD_LOGIC; 

 FmrOrTmrState  : in std_logic; 

 ModuleState: in std_logic_vector(4 downto 0); 

 ErrorDetectorOutput: out std_logic_vector(4 downto 
0); 

 Input1 : in  std_logic_vector(159 downto 0); 

 Input2 : in  std_logic_vector(159 downto 0); 

 Input3 : in  std_logic_vector(159 downto 0); 

 Input4 : in  std_logic_vector(159 downto 0); 

 Input5 : in  std_logic_vector(159 downto 0); 

 FtResultOut : out  std_logic_vector(159 downto 0) 

); 

END COMPONENT; 

 

COMPONENT ModuleUnit 

PORT( 

 Clk : in STD_LOGIC; 

 Reset : in STD_LOGIC; 

 ModulInput: in std_logic_vector(3 downto 0); 

 ModulOutput0: out std_logic_vector(7 downto 0); 

 ModulOutput1: out std_logic_vector(3 downto 0) 

); 

END COMPONENT; 

The DPR document does not mention to copy our NGC 

files, but the components that are added should be available in 

the implementation directory of the XPS project. We need to 

copy manually the NGC files that have been created because to 

enable DPR, we need to generate the BitStream from XPS. 

Without those NGC files, the Generate BitStream will fail. 

After Generate BitStream, asystem_bd file will be created; it is 

used later when creating the system’sace file. 

For component initiation, we can initiate the component as 

many as we want.Module unit is initiated five times to enable 

the FMR. In the initiation code, we map the port according to 

the signal that related. Following is some initiations code that 

we have created: 

Inst_m1: ModuleUnit PORT MAP( 

 Clk     => Bus2IP_Clk,   

 Reset     => Bus2IP_Resetn,  

 ModulInput  => InputToModule1(3 downto 0),\ 

 ModulOutput0 => OutputFromModule1(7 downto 0), 

 ModulOutput1 => OutputFromModule1(11 downto 8)  

 );    

Inst_m2: ModuleUnit PORT MAP( 

 Clk     => Bus2IP_Clk,   

 Reset     => Bus2IP_Resetn, 

 ModulInput  => InputToModule2(3 downto 0), 

 ModulOutput0  => OutputFromModule2(7 downto 0), 

 ModulOutput1 => OutputFromModule2(11 downto 8) 

 );   

Bus2IP_Clk is required to clock the component so that 

component know when should work and work only is needed. 

Inst_m1 and Inst_m2 will be the portion for Dynamic Partial 

Reconfiguration. We can remove the connection or establish 

the connection of the module unit by making the instantiated 

object as a dynamic partitioned part. 

Mapping the output from each module to the input voter unit, 

the voter should vote which one is the correct data from five 

modules in FMR mode, and three modules in TMR mode, and 

find the module that is faulty. Following is the code that maps 

the output of voter unit: 

 InputToVoter1 <= OutputFromModule1; 

 InputToVoter2 <= OutputFromModule2; 

 InputToVoter3 <= OutputFromModule3; 

 InputToVoter4 <= OutputFromModule4; 

 InputToVoter5 <= OutputFromModule5; 

It is important to consider how the communication between 

the processor and the IP. The IP will have a specific address 

that will be used by the processor to read and write the data in a 

32-bit memory location. When creating the IP, we have to 

decide how many numbers of software accessible register, one 

number is having 32-bit memory allocation. We assign the 

output of the Voter Unit to this address so that we can analyze 

the result by sending the data to a computer through RS232. 

Here, we have two numbers of software accessible register so 

when we want to access the data we need to know the 

BASEADDR of our IP. Following is the Memory Register 

Mapping that is reference from Xilinx automation code. 

C_BASEADDR is the IP address from IP creation: 

"10"    : C_BASEADDR + 0x0 

"01"    : C_BASEADDR + 0x4 

VII. PROGRAM THEMICROBLAZEUSING C CODE IN XILINX 

DEVELOPMENT KIT (SDK) TO OPERATE A DPR 

After generating the Bitstraem from XPS, we are exporting 

the design to SDK. This will give prompt to use an SDK 

application to put our C code and all the Bitstream will be 

exported to our SDK project. We can find the c code template 

to do DPR in the UG744_design_files.zip that is informed in 

the DPR Document from Xilinx. We add the functionality to 

check the module for error and then do reconfiguration. 

Following is the code to check the module that is an error: 

intErrorModule=Xil_In32(XPAR_DUALMODEFT_0_BASEADDR); 

Xil_In32 function is used to perform an input operation for a 

32-bit memory location by reading from the specified address 

and returning the value read from that address. Here we read at 

the address XPAR_DUALMODEFT_0_BASEADDR where our IP is 

residing. The following VHDL code informs that Error 

Detector data is placed in the first ("10") accessible register: 

caseslv_reg_read_sel is 

 when "10" => slv_ip2bus_data(4 downto 0) <=   
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  ErrorDetectorOutput(4 downto 0); 

 when "01" => slv_ip2bus_data(11 downto 0) <=  

  FtResult(11 downto 0); 

 when others => slv_ip2bus_data <= (others => '0'); 

end case; 

If we want to access the FtResult, we need to add the 

address of 4 because it is placed in the second ("01") accessible 

register, which will be XPAR_DUALMODEFT_0_BASEADDR+4 as Xilinx 

has described how to access this memory data.  

To see the result of our application and to make sure 

everything is configured properly before we go to the next step 

in Plan Ahead, we can test the project by loading the bit into the 

device using of Xilinx Tool  because Plan Ahead will consume 

much times. Based on the experience that we have done, we 

will be able to get the system.ace correctly if we use .elf file 

from release, to get.elf from release, we need to Build All the 

application projects. 

 

Figure 2 Creating an image file form 

VIII. DESIGN DYNAMIC RECONFIGURATION 

USING PLAN AHEAD 

The next step is creating the project for the Dynamic 

Reconfiguration floor plan using Plan Ahead. The important 

stages we need to care are: 

1) In the Plan Ahead, we import all the NGC files that have 

been created in the XPS to the project. NGC files from our 

component (Voter Unit and Module Unit) are not included, 

but they will be included later when we make 

reconfigurable module. There is opportunity to load the 

NGC files then. 

2) Setting partition for the netlist or NGC files. When setting 

the partition, we have option either to make the partition is 

filled by blank module or by available netlistfile. We create 

two files: blank and available netlist. Those will be our bit 

file to be written up in the RAM FPGA during DPR 

processing. 

3) Placing the reconfiguration module in the device in FPGA. 

There will be available FPGA area form that can be drag 

and drop when we select the Set PblockSize. 

4) Creating the strategies. This stage needs to be done 

carefully when adding data inMore Optionsfield in DPR 

Document using../../../edk/implementation/system.bmm. 

Based on our experience, it cannot be done so we need to 

change to exact directory, for example:-bm 

E:\PROJECT\\XPS\implementation\system.bmm. 

5) Creating the Design Runs to make the bit generation plan. 

IX. CREATING AN IMAGE FILE 

Image files contain data reconfiguration for FPGA. Image 

files will be placed in the Compact flash, they are system.ace 

and partial reconfiguration bit files. To make easy in the 

process in creating the image files, because we are going to 

generate the image files for many times: for testing, 

re-evaluating, and fixing purposes, we create the application to 

do this stage using C#. Figure 2 is the application form that will 

generate the system.ace image easily. Three important files that 

we have to have are system_bd, module (static file), and the elf 

file. 

X. TESTING THE DUAL MODE FAULT TOLERANCE 

This chapter will discuss the testing, some comparison with 

other fault tolerances, and discussion about fault tolerance 

performance under the proposed dual mode approach. We 

classify them into four topics: 

1. Measurement with respect to efficiency: By knowing the 

resource usage by fault tolerance, it will be known how 

much efficient of the design. The measurement calculation 

is done by calculating the power that is used by the FPGA 

core to the amount of resource used by the FPGA. 

2. Speed measurement: To measure the speed of mitigation 

process for error module. 

3. Testing dynamic configuration from TMR to FMR or vice 

versa: The system should be able to shift from TMR to the 

FMR mode or vice versa without disturbing the state of the 

system. This is to determine whether a system fault 

tolerance that is made can switch automatically. 

4. Testing the robustness by giving Fault Injection: This stage is 

the most decisive test. By providing fault injection to the 

system, we will know the robustness of the system.  

Measurement with respect to efficiency: The greater in using 

the resources on the FPGA, the greater Power is needed. 

Calculations were performed using the Xilinx Power Estimator 

(XPE) for Virtex 6. Figure 3 is a resource calculation on a 

single module using XPE if a module consists of 1573 LUTs 

Logic, 103 Distributed RAM, and 1456 flip-flop. 

From the results of power calculation, we require 0.010 W 

for each module. FMR will be activated 20% of the total time. 

20% is an estimation of the SAA location obtained on the 

location of the earth. Equations (1) to (7) are the calculation of 

the efficiency in one orbit (100 minutes/orbit) when satellite 

passing the SAA location: 
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            (1) 

                

                         (2) 

                                    (3) 

                    (4) 

                         (5) 

                                    (6) 

                    (7) 

TABLE I Comparison between some fault tolerances 

in using resources 

Technique Power Efficiency 

TMR without mitigation 0.03 w Not there 

TMR with mitigation 0.03 w Not there 

NMR without mitigation 0.09 w Not there 

Dual mode (FMR and TMR) 

with mitigation 

(Proposed design) 

TMR: 0.03 w 

FMR: 0.05 w 
96 Ws per orbit 

 

Name 
Clock 
(MHz) 

LUTs as 

FFs 
Toggle 
Rate 

Average 
Fanout 

Signal 
Rate 

(Mtr/s) 

Power 
(W) Logic 

Shift 
Registers 

Distributed 
RAMs 

module1 100.0 1456 0 103 1573 12.5% 3.00 12.5 0.010 

module2 100.0 1456 0 103 1573 12.5% 3.00 12.5 0.010 

module3 100.0 1456 0 103 1573 12.5% 3.00 12.5 0.010 

module4 100.0 1456 0 103 1573 12.5% 3.00 12.5 0.010 

module5 100.0 1456 0 103 1573 12.5% 3.00 12.5 0.010 

Figure 3 Power calculation in each module using XPE 

TABLE I is a comparison between some fault tolerances in 

using resources. It shows that the proposed design has 

Efficiency: 240 W·s - 144 =  96 W·s per orbit. 

TABLE II Speed of mitigation process to error module 

Module 
Size Speed 

(in millisecond) In Kilobyte In Bit 

1 128 1024000 224.93 

2 120 960000 209.66 

3 81 648000 141.59 

4 128 1024000 225.00 

5 142 1136000 261.57 

Speed measurement: Microblaze processor speed is 

100MHz. TABLE I is a comparison between some fault 

tolerances in using resources. It shows that the proposed design 

has Efficiency: 240 W·s - 144 =  96 W·s per orbit. 

TABLE II shows the speed in performing recovery to error 

module. The speed shows us that each 1 KB requires 1.75 ms; 

this speed is sufficient for our OBC. The speed is includes 

reading non-volatile file on a Compact Flash memory and 

writing to the ICAP port. The size of each module varies 

depending on the amount of resources. Although required 

resource is the same, the size of file is different due to the 

variation when drawing using pblock tool in Plan Ahead. 

Testing dynamic configuration from TMR to FMR: In this 

testing, we want to know whether the designed system can 

switch from TMR to FMR automatically. Switch from TMR to 

FMR is done when error in a module is detected 5 times 

consecutively.  

Figure 4 shows fault is injected to the module 5 times 

consecutively after which the system recovers the faulty 

module immediately. Then after five times error was detected, 

the system added module 4 and module 5; if module 4 and 

module 5 is activated, it is in FMR state. 

Testing dynamic configuration from TMR to FMR: In this 

testing we want to know whether the system can switch from 

FMR to TMR automatically. Switch from FMR to TMR is done 

when free error in more than five consecutive calculations 

occurs.  

Figure 5 shows a situation after 6 consecutive calculations 

without error. In Blank field, module 4 and 5 are removed or 

made to be blank. If module 4 and 5 is removed, we considered 

it is in TMR state. After switch to TMR state, we send again the 

data, and we see the data still can be encoded and decoded. 

Testing the robustness by giving Fault Injection: In this 

testing we would like to know, whether the system work 

correctly or not when many faults are injected to the system. 

Figure 6 shows part of injection which is made.  

When fault is injected, we send the data to the system 

immediately before the system makes the recovery. After that, 

we allow the system to recover the erroneous module. This is 

done in more than 1 hour with more than 3600 times 

reconfiguration using DPR technique. The data is still valid; the 

system can decode and encode the data which is sent to the 

system correctly. 
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XI. CONCLUSION 

Dual Mode fault tolerance for FPGA has been implemented 

successfully, the transition from FMR mode to TMR or vice 

versa can be done without interrupting the system which is run, 

this proves that we can make another fault tolerant system with 

various designs, not only dual mode. Voter unit can select the 

correct data, whether in FMR or TMR mode, and the error 

detector can detect the module that is an error. Each module can 

calculate the Ext Hamming Code with having same output or 

result to each other. We presented systematical steps to 

successfully implement Dual Mode Fault Tolerance, and 

showed the important aspects to achieve this project. 

The efficiency using dual mode is about 96 W·s per orbit 

when satellite passing SAA location. Fault injection is done for 

more than 1 hour with more than 3600 times reconfiguration, 

and the system still worked correctly without any crash or hang, 

and the system can encode/decode the data correctly. 

 

Figure 4 Reconfiguration Testing from TMR to FMR 

 

Figure 5 Reconfiguration Testing from FMR to TMR 
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Figure 6 Fault injection testing 
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