

The Journal of Instrumentation, Automation and Systems

Technical Implementation of

Dual Mode Fault Tolerance
Haryono, Jazi Eko Istiyanto, Agus Harjoko, and Agfianto Eko Putra

Department of Computer Science and Electronics, Gadjah Mada University, Yogyakarta, Indonesia

Abstract—Field Programmable Gate Array (FPGA) is susceptible

from hazardous radiation that leads to be in error state. In order to

avoid that condition, we apply a fault tolerance technique. Most of the

fault tolerances today are only using one mode, which means the fault

tolerance that is applied will run all the time without changing its

design. It does not consider the condition whether the hazard radiation

will occur more frequently or not. As researches have shown, in the

orbit, the hazard radiation happens in the South Atlantic Anomaly

(SAA)frequently. Therefore, this project creates a new methodology in

implementation of fault tolerance by using dual mode. When radiation

is happened frequently, we apply more robust fault tolerance; if not

frequent, we apply simple fault tolerance. A robust fault tolerance will

use more resources, and simple fault tolerance will use less resources.

Configuration in FPGA is done by Dynamic Partial Reconfiguration

(DPR), which means the transition from robust to simple fault

tolerance or vice versa is done while the system is running. This paper

will talk about the technical implementation of dual mode fault

tolerance by presenting systematically order and important aspect to

implement the design successfully. The paper shows a result that dual

mode fault tolerance can be configured in FPGA successfully.

Keywords—FPGA, Fault Tolerance, Dynamic Partial

Reconfiguration.

I. INTRODUCTION

HE effects of radiation cause errors in electronic circuits [1].

One such effect is the Single Event Effects (SEE), which

causes changes in the value of the memory / flip-flop (SEU) or

a combination of logic [1]. There are several methods to

prevent a fault in the system such as Triple Modular

Redundancy (TMR), Duplex System, and Error Detection and

Correction Code (EDAC) such as Hamming Code, Quasi

Cyclic Code, etc. The error mitigation is a very active research

issue at this time; many research teams are developing methods

for increasing reliability of FPGA based systems [2].

Subsystem satellite of On-Board Computer (OBC) must be

robust, because OBC has an important role in satellite.

According to [3], OBC have to monitor, control, acquire,

analyze, make decision, and execute a command. Because of its

important role, the OBC should have a good fault tolerance. In

satellite, resources are limited that we need to use the resources

efficiently. In our work, a fault tolerance system technique that

considers radiation environment was developed. Most of fault

tolerances today are only using one mode, which means the

fault tolerance that is applied will run all the time without

changing its configuration. It does not consider the condition

whether the hazard radiation will occur more frequently or not.

Research has shown that in the orbit, hazard radiation happens

in South Atlantic Anomaly (SAA) frequently [4].

Online Checkers were applied in [5] where the module is

duplicated. However in the implementation, checker requires

more resources to cover the entire existing functionality and

becomes more complex. TMR with combination design was

applied in [6]. As quoted by the research in [7], in the orbit,

TMR design is not enough to mitigate the entire fault that

occurs; the fault can happen to two modules at the same time.

Fault Tolerance using nine redundancies that makes more

intensive in using the resources of FPGA was developed in [8].

Another approach of fault tolerance is found in [9] by

triplication the Logic Unit (ALU), along with using TMR.

Research in [10] proposed a design that has advantages in

efficiency of resource usage because the FPGA can be

reconfigured at runtime in accordance with the needs of the

system using DPR implementation. But it has not discussed

about the implementation of fault tolerance.

Knowing the state of the art of fault tolerances above, we

therefore create a new methodology in implementation of fault

tolerance by using dual mode. Dual mode design is expected to

be efficient in using resources and maintain the robustness.

This design considers two conditions: when the hazard

radiation occurs more frequently and less frequently. When it is

more frequent, we apply more robust fault tolerance; if it is not

frequent, we apply simple fault tolerance. For robust fault

tolerance, Five Modular Redundancy (FMR) was applied, and

for simple fault tolerance, Triple Modular Redundancy (TMR)

was applied. This paper will talk about the technical

implementation of dual mode fault tolerance, the tools, codes,

and important aspect to implement dual mode fault tolerance

successfully.

II. DESIGN OF DUAL MODE FAULT TOLERANCE AND TOOLS

The basic idea is to dynamically change the fault tolerance

design while running so we create two designs of the fault

tolerance. First design uses TMR and the second design uses

FMR. When the hazard radiation is happening frequently we

then switch to use FMR, if not then we switch to use TMR.

Figure 1 is the design of the dual mode fault tolerance. In TMR Corresponding author: Haryono (e-mail:haryono81@gmail.com).

This paper was submitted on February 12, 2014; revised on June 25, 2014; and
accepted on June 25, 2014.

T

The Journal of Instrumentation, Automation and Systems 11

state, module 4 and module 5 will be removed from FPGA

configuration if module 4 and module 5 exist in FMR state.

We use Virtex 6 FPGA from Xilinx. Integrated Software

Environment (ISE) is used to create a module using VHSIC

Hardware Description Language (VHDL) code. Xilinx

Platform Studio (XPS) is used to create Dynamic Partial

Reconfiguration (DPR) platform and add Intellectual Property

(IP). We use Microblaze processor to execute reconfiguration

while system is running, Xilinx Development Kit is used to

program the Microblaze processor using c code, to decide when

the reconfiguration is done, and to Plan Ahead for Dynamic

Reconfiguration planning.

Figure 1The design of the dual mode fault tolerance

Switching between FMR and TMR is done automatically. It

is triggered by an error that occurs in the module consecutively.

We can know the output of the module so that we can compare

to each other which one is error. In this design, we setup with

five times, if Error Detector detects an error in some module

five times consecutively then the system moves to the FMR

mode, at here we consider there are many radiation occurs. If

not detected the error at five times every calculation of the

module will then move to the TMR mode. The settings of how

many errors are detected respectively can be changed according

to the needs of the system.

III. CREATE A MODULE USING VHSIC HARDWARE

DESCRIPTION LANGUAGE (VHDL) CODE

To represent our model of fault tolerance, we create a

module that will handle the data more safely. We therefore give

an Error Detection and Correction (EDAC) functions in our

module. The module is created by the ISE Project Navigator

using VHDL code, and at the end, we generated Netlist file that

contains information (NGC) file. We only create one module

that can be used to reconfigure all modules in an FPGA. We

placed the component of the module in a user_logic.vhdl, it is

done when we are creating IP, then we initiated it five times.

XILINX ISE is used to create the module. Because it is easier

to test, we can focus only the VHDL code that we want to test.

The clock is an important part that is used to start the

processing. The Reset port is used to reset our variable data, to

ensure that all the data reverts back to the initial state when we

reset. Input Module is everything that coming to the module and

Output Module is the data result which has been processed.

The module should be able to handle the data properly. The

data can be an error, may be flip from the original data due to

radiation, so we apply the module by Error Detection and

Correction (EDAC). EDAC that we are using is Extended

Hamming Code (8,4). Hamming codes have a minimum

distance of 3, which means that the decoder can detect and

correct a single error, but it cannot distinguish a double bit error

of some codeword from a single bit error of a different

codeword [11]. Therefore, we use Extended Hamming Code

that can correct single bit errors and detect two-bit errors. Detail

about extended hamming code that is very nicely presented,

about how to construct and repair, from theory to technical

aspect that inspires this implementation can be found in [11]

and [9].

The scenario of the experiment is when the data is received

by the module, the module will encode the data by Extended

hamming code, from encode data the module will decode the

data. The output0 will be the encode data and the output1 will

be the decoding/actual data, the actual data is gotten from the

encoded data, because we want to make sure that the Hamming

code is properly working. To make the analysis easy, we create

variable in the hamming code processing. When the code is hit,

this variable is assigned immediately using signal that will

appear after the process is finished. Parity is calculated from

actual data that is coming to the module; encoding data is

nothing but the actual data plus parity. The output will be the 8

bits, four bits are actual data and the other 4 bits are parity.

The module is able to handle in reading the encoding

data/codeword. By calculating the syndrome from the encoding

data, we can know which position is an error. If the syndrome is

zero, it means no error; if syndrome in index '0' is zero and the

other index (1-3) is not zero, it means double error; and if

syndrome in index '0' is one, it means error is happening and

can be repaired [11].

IV. CREATE A VOTER UNIT AND ERROR DETECTOR

Voter unit is a component that handles to select which data

that is correct; the voter unit uses TMR and FMR technique.

Switching from FMR to TMR or vice versa can be done while

the system is running. Ports that are used are shown in the

following VHDL code:

Port (

Clk : in STD_LOGIC;

Reset : in STD_LOGIC;

TmrState : in std_logic;

ModuleState : in std_logic_vector(4 downto 0);

ErrorDetectorOutput : out std_logic_vector(4 downto 0);

 J Instrumentation, Automation and Sys., 2014, Vol. 1

12

Input1 : in std_logic_vector(159 downto 0);

Input2 : in std_logic_vector(159 downto 0);

Input3 : in std_logic_vector(159 downto 0);

Input4 : in std_logic_vector(159 downto 0);

Input5 : in std_logic_vector(159 downto 0);

FtResultOut : out std_logic_vector(159 downto 0));

TmrState is input that indicate whether in TMR mode or

FMR mode. ModuleState is indicating which module that is

active. ErrorDetectorOutput will give information which

module that is an error, in the future will be used to repair the

module when it is in error. Input1 to Input5 is input data for

each module, as we instantiate the module in a five times each

instantiation will be mapped to this input. Last is FtResultOut, it

is the final data that we expected to be the correct one.

The code inside the voter will check module state. Because

the voter can switch while the system is run, we make the data

in Input4 to be '1' or high all so that the voter condition will

automatically switch to TMR technique if TmrState is '1'.The

following VHDL code shows about this technique:

FtResult<=

(PR_Input1 and PR_Input2 and PR_Input3) or

 (PR_Input1 and PR_Input2 and PR_Input4) or

 (PR_Input1 and PR_Input2 and PR_Input5) or

 (PR_Input1 and PR_Input3 and PR_Input4) or

 (PR_Input1 and PR_Input3 and PR_Input5) or

 (PR_Input1 and PR_Input4 and PR_Input5) or

 (PR_Input2 and PR_Input3 and PR_Input4) or

 (PR_Input2 and PR_Input3 and PR_Input5) or

 (PR_Input2 and PR_Input4 and PR_Input5) or

 (PR_Input3 and PR_Input4 and PR_Input5);

Error detector will be responsible to detect and determine

which module that is erroneous after we know the correct value.

In other words, we can know which one that is not correct by

simply comparing the result and the input with each input from

each module. The following is the VHDL code that employs

this technique:

ErrorDetector(0) <= '0' when FtResult = PR_Input1 else '1';

ErrorDetector(1) <= '0' when FtResult = PR_Input2 else '1';

ErrorDetector(2) <= '0' when FtResult = PR_Input3 else '1';

ErrorDetector(3) <= '0' when FtResult = PR_Input4 else '1';

ErrorDetector(4) <= '0' when FtResult = PR_Input5 else '1';

V. GENERATE THE NGCFILEOF THE MODULE UNIT AND

VOTER UNIT

After we finish from the VHDL code, we then analyze using

simulation. We add the new source by VHDL test bench, then

switch to simulation. After everything is run with the proper

data, we then generate the NGC file for our module. This NGC

file will be used by the XPS. We have to make sure when doing

Dynamic Reconfiguration is removing the Add I/O buffers.

This can be found in the Process Running Design by right click

process properties in the Synthesize, then uncheck the iobuf at

Xilinx Specific Option. If we do not do this stage, the error will

appear during implementation in the XPS project; we cannot

serialize the same buffer. To make generating NGC easy and to

test the behavior before going to XPS, we can just make one

ISE project that contains Module Unit and Voter Unit VHDL;

those components will have Top Module. Top Module will do

the task as that in user_logic.vhdl. We can generate the NGC

directly in this project by selecting the component either

Module Unit or Voter Unit, but we need to make the component

that is selected as Top Module.

VI. CREATE DYNAMIC PARTIAL RECONFIGURATION (DPR)

PLATFORM AND CREATE INTELLECTUAL PROPERTY (IP) IN THE

XPS PROJECT

When switching between modes and fixing the error module,

the dual mode fault tolerance must not interrupt the system

while running. Therefore we use DPR that is offered by Xilinx.

The technical documentation to achieve DPR from Xilinx can

be found in [13]. Here, we are stretching about the DPR system

that is related to achieving dual mode fault tolerance and some

parts that have not mentioned from the document.

By using, XPS we create a project that place our components

(voter unit and module unit), and create the structure of which

the dual mode fault tolerance will work. Microblaze processor

is added in the system assembly view, having a task to manage

when the DPR will be done and write the bit data to FPGA

RAM that contain the module unit.

Adding IP is not included in the DPR document, but is

relatively important to be successful in implementing DPR. The

document that talks about adding the IP can be found in the

[13]. The IP will handle about how to place our components

and communicate with each other. The components that we

have made are placed in the user_logic.vhdl. user_logic.vhdl

is a file that will be generated automatically by XPS when we

create an IP. user_logic.vhdl allows us to add our component

and map the ports according to our design. The important

aspect and short step that we have to do after adding the IP are

as the following.

Step 1: Adding the port in mpd file. If we want to connect our

IP to external port, we need to add the name of the port

in the file.

Step 2: Rescanning the project. This makes our port that is

added in mpd file is shown in the Assembly View

under Ports Tab at the IP that is added.

Step 3: Making the ports that are shown to be external.

Step 4: Adding the port in the ucf file according to the name

that is shown in the most left column that has been

given.

Step 5: Adding a port in the "Name of IP".vhdl and then map

the port in user_logic.vhdl instantiation.

Step 6: In the user_logic.vhdl,adding the port in entity, then

finally we can use it.

Placing the component and map it in the user_logic.vhdl,

we add the components that we have created (module unit and

voter unit). Following is the VHDL that place the component in

the user_logic.vhdl:

The Journal of Instrumentation, Automation and Systems 13

COMPONENT VoterUnit

PORT(

 Clk : in STD_LOGIC;

 Reset : in STD_LOGIC;

 FmrOrTmrState : in std_logic;

 ModuleState: in std_logic_vector(4 downto 0);

 ErrorDetectorOutput: out std_logic_vector(4 downto
0);

 Input1 : in std_logic_vector(159 downto 0);

 Input2 : in std_logic_vector(159 downto 0);

 Input3 : in std_logic_vector(159 downto 0);

 Input4 : in std_logic_vector(159 downto 0);

 Input5 : in std_logic_vector(159 downto 0);

 FtResultOut : out std_logic_vector(159 downto 0)

);

END COMPONENT;

COMPONENT ModuleUnit

PORT(

 Clk : in STD_LOGIC;

 Reset : in STD_LOGIC;

 ModulInput: in std_logic_vector(3 downto 0);

 ModulOutput0: out std_logic_vector(7 downto 0);

 ModulOutput1: out std_logic_vector(3 downto 0)

);

END COMPONENT;

The DPR document does not mention to copy our NGC

files, but the components that are added should be available in

the implementation directory of the XPS project. We need to

copy manually the NGC files that have been created because to

enable DPR, we need to generate the BitStream from XPS.

Without those NGC files, the Generate BitStream will fail.

After Generate BitStream, asystem_bd file will be created; it is

used later when creating the system’sace file.

For component initiation, we can initiate the component as

many as we want.Module unit is initiated five times to enable

the FMR. In the initiation code, we map the port according to

the signal that related. Following is some initiations code that

we have created:

Inst_m1: ModuleUnit PORT MAP(

 Clk => Bus2IP_Clk,

 Reset => Bus2IP_Resetn,

 ModulInput => InputToModule1(3 downto 0),\

 ModulOutput0 => OutputFromModule1(7 downto 0),

 ModulOutput1 => OutputFromModule1(11 downto 8)

);

Inst_m2: ModuleUnit PORT MAP(

 Clk => Bus2IP_Clk,

 Reset => Bus2IP_Resetn,

 ModulInput => InputToModule2(3 downto 0),

 ModulOutput0 => OutputFromModule2(7 downto 0),

 ModulOutput1 => OutputFromModule2(11 downto 8)

);

Bus2IP_Clk is required to clock the component so that

component know when should work and work only is needed.

Inst_m1 and Inst_m2 will be the portion for Dynamic Partial

Reconfiguration. We can remove the connection or establish

the connection of the module unit by making the instantiated

object as a dynamic partitioned part.

Mapping the output from each module to the input voter unit,

the voter should vote which one is the correct data from five

modules in FMR mode, and three modules in TMR mode, and

find the module that is faulty. Following is the code that maps

the output of voter unit:

 InputToVoter1 <= OutputFromModule1;

 InputToVoter2 <= OutputFromModule2;

 InputToVoter3 <= OutputFromModule3;

 InputToVoter4 <= OutputFromModule4;

 InputToVoter5 <= OutputFromModule5;

It is important to consider how the communication between

the processor and the IP. The IP will have a specific address

that will be used by the processor to read and write the data in a

32-bit memory location. When creating the IP, we have to

decide how many numbers of software accessible register, one

number is having 32-bit memory allocation. We assign the

output of the Voter Unit to this address so that we can analyze

the result by sending the data to a computer through RS232.

Here, we have two numbers of software accessible register so

when we want to access the data we need to know the

BASEADDR of our IP. Following is the Memory Register

Mapping that is reference from Xilinx automation code.

C_BASEADDR is the IP address from IP creation:

"10" : C_BASEADDR + 0x0

"01" : C_BASEADDR + 0x4

VII. PROGRAM THEMICROBLAZEUSING C CODE IN XILINX

DEVELOPMENT KIT (SDK) TO OPERATE A DPR

After generating the Bitstraem from XPS, we are exporting

the design to SDK. This will give prompt to use an SDK

application to put our C code and all the Bitstream will be

exported to our SDK project. We can find the c code template

to do DPR in the UG744_design_files.zip that is informed in

the DPR Document from Xilinx. We add the functionality to

check the module for error and then do reconfiguration.

Following is the code to check the module that is an error:

intErrorModule=Xil_In32(XPAR_DUALMODEFT_0_BASEADDR);

Xil_In32 function is used to perform an input operation for a

32-bit memory location by reading from the specified address

and returning the value read from that address. Here we read at

the address XPAR_DUALMODEFT_0_BASEADDR where our IP is

residing. The following VHDL code informs that Error

Detector data is placed in the first ("10") accessible register:

caseslv_reg_read_sel is

 when "10" => slv_ip2bus_data(4 downto 0) <=

 J Instrumentation, Automation and Sys., 2014, Vol. 1

14

 ErrorDetectorOutput(4 downto 0);

 when "01" => slv_ip2bus_data(11 downto 0) <=

 FtResult(11 downto 0);

 when others => slv_ip2bus_data <= (others => '0');

end case;

If we want to access the FtResult, we need to add the

address of 4 because it is placed in the second ("01") accessible

register, which will be XPAR_DUALMODEFT_0_BASEADDR+4 as Xilinx

has described how to access this memory data.

To see the result of our application and to make sure

everything is configured properly before we go to the next step

in Plan Ahead, we can test the project by loading the bit into the

device using of Xilinx Tool because Plan Ahead will consume

much times. Based on the experience that we have done, we

will be able to get the system.ace correctly if we use .elf file

from release, to get.elf from release, we need to Build All the

application projects.

Figure 2 Creating an image file form

VIII. DESIGN DYNAMIC RECONFIGURATION

USING PLAN AHEAD

The next step is creating the project for the Dynamic

Reconfiguration floor plan using Plan Ahead. The important

stages we need to care are:

1) In the Plan Ahead, we import all the NGC files that have

been created in the XPS to the project. NGC files from our

component (Voter Unit and Module Unit) are not included,

but they will be included later when we make

reconfigurable module. There is opportunity to load the

NGC files then.

2) Setting partition for the netlist or NGC files. When setting

the partition, we have option either to make the partition is

filled by blank module or by available netlistfile. We create

two files: blank and available netlist. Those will be our bit

file to be written up in the RAM FPGA during DPR

processing.

3) Placing the reconfiguration module in the device in FPGA.

There will be available FPGA area form that can be drag

and drop when we select the Set PblockSize.

4) Creating the strategies. This stage needs to be done

carefully when adding data inMore Optionsfield in DPR

Document using../../../edk/implementation/system.bmm.

Based on our experience, it cannot be done so we need to

change to exact directory, for example:-bm

E:\PROJECT\\XPS\implementation\system.bmm.

5) Creating the Design Runs to make the bit generation plan.

IX. CREATING AN IMAGE FILE

Image files contain data reconfiguration for FPGA. Image

files will be placed in the Compact flash, they are system.ace

and partial reconfiguration bit files. To make easy in the

process in creating the image files, because we are going to

generate the image files for many times: for testing,

re-evaluating, and fixing purposes, we create the application to

do this stage using C#. Figure 2 is the application form that will

generate the system.ace image easily. Three important files that

we have to have are system_bd, module (static file), and the elf

file.

X. TESTING THE DUAL MODE FAULT TOLERANCE

This chapter will discuss the testing, some comparison with

other fault tolerances, and discussion about fault tolerance

performance under the proposed dual mode approach. We

classify them into four topics:

1. Measurement with respect to efficiency: By knowing the

resource usage by fault tolerance, it will be known how

much efficient of the design. The measurement calculation

is done by calculating the power that is used by the FPGA

core to the amount of resource used by the FPGA.

2. Speed measurement: To measure the speed of mitigation

process for error module.

3. Testing dynamic configuration from TMR to FMR or vice

versa: The system should be able to shift from TMR to the

FMR mode or vice versa without disturbing the state of the

system. This is to determine whether a system fault

tolerance that is made can switch automatically.

4. Testing the robustness by giving Fault Injection: This stage is

the most decisive test. By providing fault injection to the

system, we will know the robustness of the system.

Measurement with respect to efficiency: The greater in using

the resources on the FPGA, the greater Power is needed.

Calculations were performed using the Xilinx Power Estimator

(XPE) for Virtex 6. Figure 3 is a resource calculation on a

single module using XPE if a module consists of 1573 LUTs

Logic, 103 Distributed RAM, and 1456 flip-flop.

From the results of power calculation, we require 0.010 W

for each module. FMR will be activated 20% of the total time.

20% is an estimation of the SAA location obtained on the

location of the earth. Equations (1) to (7) are the calculation of

the efficiency in one orbit (100 minutes/orbit) when satellite

passing the SAA location:

The Journal of Instrumentation, Automation and Systems 15

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

TABLE I Comparison between some fault tolerances

in using resources

Technique Power Efficiency

TMR without mitigation 0.03 w Not there

TMR with mitigation 0.03 w Not there

NMR without mitigation 0.09 w Not there

Dual mode (FMR and TMR)

with mitigation

(Proposed design)

TMR: 0.03 w

FMR: 0.05 w
96 Ws per orbit

Name
Clock
(MHz)

LUTs as

FFs
Toggle
Rate

Average
Fanout

Signal
Rate

(Mtr/s)

Power
(W) Logic

Shift
Registers

Distributed
RAMs

module1 100.0 1456 0 103 1573 12.5% 3.00 12.5 0.010

module2 100.0 1456 0 103 1573 12.5% 3.00 12.5 0.010

module3 100.0 1456 0 103 1573 12.5% 3.00 12.5 0.010

module4 100.0 1456 0 103 1573 12.5% 3.00 12.5 0.010

module5 100.0 1456 0 103 1573 12.5% 3.00 12.5 0.010

Figure 3 Power calculation in each module using XPE

TABLE I is a comparison between some fault tolerances in

using resources. It shows that the proposed design has

Efficiency: 240 W·s - 144 = 96 W·s per orbit.

TABLE II Speed of mitigation process to error module

Module
Size Speed

(in millisecond) In Kilobyte In Bit

1 128 1024000 224.93

2 120 960000 209.66

3 81 648000 141.59

4 128 1024000 225.00

5 142 1136000 261.57

Speed measurement: Microblaze processor speed is

100MHz. TABLE I is a comparison between some fault

tolerances in using resources. It shows that the proposed design

has Efficiency: 240 W·s - 144 = 96 W·s per orbit.

TABLE II shows the speed in performing recovery to error

module. The speed shows us that each 1 KB requires 1.75 ms;

this speed is sufficient for our OBC. The speed is includes

reading non-volatile file on a Compact Flash memory and

writing to the ICAP port. The size of each module varies

depending on the amount of resources. Although required

resource is the same, the size of file is different due to the

variation when drawing using pblock tool in Plan Ahead.

Testing dynamic configuration from TMR to FMR: In this

testing, we want to know whether the designed system can

switch from TMR to FMR automatically. Switch from TMR to

FMR is done when error in a module is detected 5 times

consecutively.

Figure 4 shows fault is injected to the module 5 times

consecutively after which the system recovers the faulty

module immediately. Then after five times error was detected,

the system added module 4 and module 5; if module 4 and

module 5 is activated, it is in FMR state.

Testing dynamic configuration from TMR to FMR: In this

testing we want to know whether the system can switch from

FMR to TMR automatically. Switch from FMR to TMR is done

when free error in more than five consecutive calculations

occurs.

Figure 5 shows a situation after 6 consecutive calculations

without error. In Blank field, module 4 and 5 are removed or

made to be blank. If module 4 and 5 is removed, we considered

it is in TMR state. After switch to TMR state, we send again the

data, and we see the data still can be encoded and decoded.

Testing the robustness by giving Fault Injection: In this

testing we would like to know, whether the system work

correctly or not when many faults are injected to the system.

Figure 6 shows part of injection which is made.

When fault is injected, we send the data to the system

immediately before the system makes the recovery. After that,

we allow the system to recover the erroneous module. This is

done in more than 1 hour with more than 3600 times

reconfiguration using DPR technique. The data is still valid; the

system can decode and encode the data which is sent to the

system correctly.

 J Instrumentation, Automation and Sys., 2014, Vol. 1

16

XI. CONCLUSION

Dual Mode fault tolerance for FPGA has been implemented

successfully, the transition from FMR mode to TMR or vice

versa can be done without interrupting the system which is run,

this proves that we can make another fault tolerant system with

various designs, not only dual mode. Voter unit can select the

correct data, whether in FMR or TMR mode, and the error

detector can detect the module that is an error. Each module can

calculate the Ext Hamming Code with having same output or

result to each other. We presented systematical steps to

successfully implement Dual Mode Fault Tolerance, and

showed the important aspects to achieve this project.

The efficiency using dual mode is about 96 W·s per orbit

when satellite passing SAA location. Fault injection is done for

more than 1 hour with more than 3600 times reconfiguration,

and the system still worked correctly without any crash or hang,

and the system can encode/decode the data correctly.

Figure 4 Reconfiguration Testing from TMR to FMR

Figure 5 Reconfiguration Testing from FMR to TMR

The Journal of Instrumentation, Automation and Systems 17

Figure 6 Fault injection testing

ACKNOWLEDGMENT

This project is supported by Satellite Centre - LAPAN and

Doctorate Program in Computer Science, Department of

Computer Science and Electronics, Faculty of Mathematics and

Natural Sciences, Gadjah Mada University. We would like to

acknowledge for their support in this project. Thank you very

much for Xilinx that publishing about the Technical Partial

Reconfiguration document.

REFERENCES

[1] Schrimpf, R. D., Fleetwood, D. M., 2004, Radiation Effects and Soft

Errors in Integrated Circuits and Electronic Devices, 34, World Scientific

Publishing Wspc, Toh Tuck Link Singapore. CrossRef

[2] Kastil, J., Straka, M., Kotasek, Z., 2012, Methodology for Increasing

Reliability of FPGA Design via Partial Reconfiguration, The First

Workshop on Manufacturable and Dependable Multicore Architectures at
Nanoscale (MEDIAN'12), Annecy.

[3] Maral, G., Bousquet, M., 2004, Satellite Communications System,

Thomson Press, New Delhi.

[4] Poivey, C., Barth, J.L., LaBel, K.A., Gee, G., Safren, H., 2003, In-flight

observations of long-term single-event effect (SEE) performance on

Orbview-2 solid state recorders (SSR), Radiation Effects Data Workshop,
2003. IEEE, 21-25 July 2003.

[5] Straka, M., Kotasek, Z., Winter, J., 2008, Digital Systems Architectures
Based on On-line Checkers, Digital System Design Architectures,

Methods and Tools, 2008. DSD '08. 11th EUROMICRO Conference,

Parma.

[6] Straka, M., Kastil, J., Kotasek, Z., 2010, Modern fault tolerant

architectures based on partial dynamic reconfiguration in FPGAs, Design
and Diagnostics of Electronic Circuits and Systems (DDECS), 2010 IEEE

13th International Symposium, Vienna.

[7] Bentoutou, Y., 2011, Performance Comparison of Real Time EDAC
Systems for Applications On-Board Small Satellites, World Academy Of

Science, Engineering and Technology, 131, 66, 709 – 711

[8] Bentoutou, Y., 2011, A Real Time EDAC System for Applications On
Board Earth Observation Small Satellites, IEEE Transactions on

Aerospace and Electronic Systems, 3, 53, 1022 – 1027.

[9] Shinghal, D. dan Chandra, D., 2011, Design and Analysis of a Fault
Tolerant Microprocessor Based on Triple Modular, International Journal

of Advances in Engineering & Technology, 1, 1, 21-27.

[10] Savani, V.G., Mecwan, A.I., Gajjar, N.P., 2011, Dynamic Partial
Reconfiguration of FPGA for SEU Mitigation and Area Efficiency,

International Journal of Advancements in Technology, 2, 2, 285-291.

[11] Wikipedia, Hamming code, [23 January 2014] VIEW ITEM

[12] Ian Elliott, 2002, Advanced Electronic Design Automation, Northumbria

University,pp. 15-16[23 January 2014] VIEW ITEM

[13] Xilinx, 2013, Partial Reconfiguration of a Processor Tutorial,[1 January
2014] VIEW ITEM

[14] Xilinx, 2012, Adding Custom IP to an Embedded System Using AXI,[1

January 2014] VIEW ITEM

http://www.cmaj.ca/cgi/external_ref?access_num=10.1142/5607&link_type=DOI
http://en.wikipedia.org/wiki/Hamming%287,4%29
http://read.pudn.com/downloads102/ebook/418392/VHDL_Program¬ming_Examples.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/PlanAhead_Tutorial_Reconfigurable_Processor.pdf
http://www.dc.uba.ar/materias/CoDisenio/2013/c2/descargas/lab3.pdf

