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Abstract—In this paper, a new algorithm for segmentation of 

planar regions from depth images is proposed. The development of a 

new segmentation algorithm was motivated by the results of other 

state-of-the-art algorithms which are optimized to segment depth 

images acquired by the laser scanners or structure light cameras and 

which however, have delivered low accuracy results when applied on 

depth images computed from stereo cameras. The proposed planar 

segmentation algorithm is based on a novel feature to be called 

Gradient of Depth feature (GoD). The proposed GoD feature is a 

parameter-free and it is computed in the two-dimensional (2D) image 

space. The later makes it, in comparison to local surface normal, easy 

to compute in terms of complexity and faster to compute in terms of 

computational time. The proposed GoD feature is implemented into an 

algorithm which utilizes the one-dimensional (1D) feature space of the 

GoD feature which resulted in increasing the robustness of the 

algorithm to parameters change. The intensive experimental results 

presented in this paper confirm the robustness of the proposed 

algorithm in segmentation of the planar regions of planar and 

non-planar (i.e. cylindrical or curved) objects in different types of 

images and in different scenarios. In terms of segmentation accuracy, 

the GoD-based algorithm meets or outperforms the performance of 

other state-of-the-art algorithms. 

Keywords—Planar segmentation, gradient of depth, depth image, 

robot vision. service robot. 

I. INTRODUCTION 

HE importance of the service robots is increasing every day. 

They are used to support care for elderly citizens and those 

in need of care to live independently on their own in their 

homes for longer [1]. They are also developed as support 

systems for paralyzed individuals to help them to go back to 

professional life [2]. 

Working in a human environment imposes a direct 

challenge to the service robots in sensing and understanding the 

surrounding scene. A possible solution for decreasing the 

complexity of understanding the sensed scene for the robot is to 

segment the scene into a set of planar regions. Usually, most of 

the objects in the surroundings of the robots are flat, or can be 

decomposed into planar regions [3]. 

There are mainly two features used in literature for the 

segmentation process: local surface normal and scan line 

segmentation. The local surface normal at a point on a surface 

is a vector that is perpendicular to the tangent plane to that 

surface at that point [4]-[6]. The surface normal for each point 

is computed by fitting a 3D plane to the nearest   neighborhood 

points. Scan line segmentation technique, on the other hand, is 

used to detect edges between different planar regions in depth 

images [7]-[9]; each scan line (row, column and diagonal) is 

divided into different segments based on the distance between 

the fitted model (polynomial function) and the points on the 

scan line. 

This paper presents a novel feature, so-called Gradient of 

Depth feature (   ). In contrary to the previous features, the 

proposed Gradient of Depth (   ) feature is parameter-free 

and it is computed in the 2D image space which makes it, 

compared to local surface normal, easier to compute in terms of 

complexity and faster in terms of computational time. The 

proposed feature is defined by two components, the Magnitude 

Gradient of Depth (    ) and the Directional Gradient of 

Depth (    ). The      value relates to the 3D orientation 

of the plane while the      value relates to the jumping edge 

through the depth levels. The feature space of the      

component is one-dimension [0° 360°] which makes the     

feature convenient for clustering algorithms. The     feature 

is implemented into a robust algorithm which has many 

advantages over the other related algorithms: In addition to the 

high segmentation accuracy, the proposed algorithm is not 

limited to segmentation of the planar objects, but also can be 

used for segmentation of the cylindrical and curved objects. 

Moreover, the algorithm is robust to parameters change which 

makes it more convenient to be used for segmentation of 

different images captured in different scenarios. The ABW 

dataset [10], Perceptron dataset [11] as well as depth images 

taken from a real-world scenario were used to evaluate the 

performance of the proposed    -based algorithm and to 

compare it to other state-of-the-art algorithms. As confirmed by 

the presented results; the proposed algorithm outperforms other 

state-of-the-art algorithms. In terms of segmentation accuracy, 

the proposed algorithm meets and, in some cases, outperforms 

state-of-the-art algorithms. In terms of robustness, the proposed 

algorithm manages to segment correctly planar regions of 

cylindrical and curved objects in depth images computed from 

stereo camera in which other segmentation algorithms failed.  

II. STATE OF THE ART 

Planar segmentation algorithms can be classified into three 

types based on the framework used for the segmentation 

process. These are: region growing algorithms, clustering 

T 
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algorithms, and edge detection algorithms. In the edge 

detection algorithms; the edges between different regions are 

computed using the scan line technique. From the computed 

edge image; close boundaries are extracted where each close 

boundary refers to a segmented planar region [8]. In the region 

growing framework, neighboring points are merged into 

adjacent regions based on some similarity conditions [5] while 

clustering algorithms tends to cluster different points with 

similar features into one cell in the feature space. A merging 

process is then implemented to merge different cells into one 

plane [6]. 

The first full comparison of different planar segmentation 

methods was given in [12]. Four different algorithms have been 

evaluated using the ABW dataset [10] and Perceptron dataset 

[11]. As reported in [12], UE method which is based on the 

local surface normal and a combination framework of 

clustering and region growing is ranked as first in terms of 

correct segmentation. In the UE method; the mean and the 

Gaussian curvature for each point in the point cloud is 

estimated and each point is then assigned to a cluster based on 

the combined signs of both mean and curvature values. Each 

cluster is considered as an initial region, and a region growing 

process is implemented to add adjacent pixels to the initialized 

regions based on some similarity conditions (i.e. 3D distance 

and the normal difference between the point and the region). 

However, a major drawback of such algorithm is the number of 

parameters to tune (nearly twelve parameters) that should be 

re-tuned when using different camera/scene. 

The second best algorithm reviewed in [12] is called UB 

method and it is based on the scan line segmentation and region 

growing algorithm. Each row, column and diagonal in the depth 

image is divided into different line segments. A seed region is 

defined as a triple of line segments on three adjacent scan lines 

that satisfy conditions with respect to a minimum length, a 

minimum overlap, and a maximum distance between the 

neighboring points on two adjacent scan lines. This seed region 

grows by adding adjacent line segments which satisfy the 

perpendicular distance condition between the end points of the 

line segment and planar equation of the region. 

In [7], an improvement to the UB algorithm was proposed 

which resulted in a better performance on both the ABW and 

Perceptron datasets. The basic idea behind the algorithm in [7] 

is based on detecting the edges between the different regions 

using the scan line approximation technique. The planar 

regions are then extracted by searching the close boundaries in 

the resulted edge image. To overcome the problem of the open 

boundaries produced by the algorithm, an iterative process 

based on dilation and planar verification is performed on the 

edge image [8]. Similar to UB method, another algorithm 

presented in [9] uses the scan lines and a Flood Fill algorithm to 

segment planar regions from noisy input range data. 

Recent applications and algorithms, however, are based 

mainly on the local surface normal feature. In [5] the point 

cloud of industrial installations is segmented using the region 

growing framework. The surface normal alongside with its 

residual are computed for each point, and points with minimum 

residuals are defined as seed points. Points are merged into 

adjacent regions if the difference in angles between the normal 

of a point and the seed point of its adjacent region is lower than 

a predefined threshold. Another segmentation algorithm that is 

based on the local surface normal and voxel grid clustering was 

used in [6] and implemented in the Point Cloud Library (PCL) 

[13]. Two clustering steps are used to segmenting the local 

surface normal: first, initial clusters are defined in the normal 

space from points whose surface normal fall in the same cell 

and second, the initialized clusters are re-defined in the distance 

space by separating clusters which represent more than one 

plane. In [14], the presented algorithm uses a combination of 

Mean Shift segmentation and Graph theory to segment the 

point cloud. However, performance evaluation on a known 

dataset is missing in both [6] and [14]. In [4], a 

Multi-Resolution plane segmentation of 3D point cloud is 

proposed where the cloud is sampled at different resolutions 

and at each resolution planar regions are extracted using Hough 

transform. The presented approach shows good results, 

however it failed in segmentation of the small planar regions. 

Each of the previous features has its own limitation and 

drawbacks. The local surface normal feature is parameter 

sensitive; the size of the neighborhood for each point in the 

input data plays an essential role in the performance of the 

algorithm; a small value will result in noisy normals while a big 

value will lead to diminishing of sharp features such as edges 

and corners. Another drawback is the expensive processing 

time needed to compute the normal for each point in the input 

data by fitting planar model to   neighborhood points. On the 

other hand, using the scan line segmentation does not guarantee 

to extract close boundaries. The limitation of using the scan line 

segmentation technique on depth images computed from stereo 

camera was also confirmed in the experiments presented in this 

paper. As given in Section IV, it failed to produce a close 

boundary even in the case of a simple box-like object. 

Moreover, the algorithm produces a lot of noise edges. 

The development of a new planar segmentation algorithm 

was motivated by the results from other state-of-the-art 

algorithms which are tailored to segment depth images 

generated from the laser scanners and structure light cameras, 

but failed to segment depth images computed from stereo 

camera of normal textured objects which are usually present in 

many indoor scenarios. 

III.    -BASED PLANAR SEGMENTATION ALGORITHM 

The    -based planar segmentation algorithm is depicted 

in Figure 1. The Input to the algorithm is a depth image; that 

includes depth images taken using laser scanner, structure light 

cameras or depth images computed from stereo camera. 

However, low resolution depth images (below 200×200 pixels) 

with a high level of noise generated from Time of Flight (   ) 

cameras (i.e. SwisRanger 3D camera) are considered 

challenging to be segmented by the proposed algorithm. 
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The algorithm computes at first the Gradient of Depth 

(   ) feature from the input depth image. To overcome the 

problem of noise in depth images and to take the advantage of 

the 1D feature space; a voting-based clustering process is 

utilized followed by a verification process. The verification 

process is based on RANSAC outlier detection [15] and has 

two benefits: 1) it helps to avoid under-segmentation that could 

result from the clustering process and 2) it makes the proposed 

algorithm robust to parameters change and possible for the use 

in wide range of applications. Over-segmentation problem is 

solved by using a region merging process which tends to merge 

over-segmented regions based on the 3D distance between two 

regions. A post processing step which includes adding non 

processed pixels and fine tuning of the regions boundary is also 

implemented to increase the accuracy of the segmentation. 

 

Figure 1 Block diagram of the    -based Planar Segmentation 

algorithm 

A. Gradient of Depth Feature 

The Gradient of Depth (   ) feature is computed in the 

depth image space. The     feature for each pixel   is defined 

by two components: Magnitude Gradient of Depth (    ) and 

Directional Gradient of Depth (    ). The      value at 

pixel   is computed using the following equation: 

where        is the pixel value (i.e. depth value) at   image 

row and   image column coordinate. 

 
a)  

 
b) 

 
c)  

 
d) 

Figure 2 a) Synthetic range image; b)      image (thresholded 

for clarity); c)      image; d) Clustered image 

The output of (1) is in the range of [0° 360°]. Figure 2 

illustrates the      values computed for pixels of a synthetic 

range image. The range image contains two boxes on the left 

where one box occludes the other, a cylindrical object in the 

middle and a spherical object on the right of the image. As it 

can be seen, pixels belonging to the same planar surface and 

parallel surfaces have the same      values while pixels 

belong to different surfaces, which are not parallel, have 

different      values. 

   

Figure 3 Special case of three planes, see the text for description 

However, there are two special cases when computing the 

     value that should be taken into consideration: 

1.             

2.             

Figure 3 illustrates an example on the two special cases. 

The      value in both cases according to (1) is equal to zero; 

however, each case belongs to a different plane. The first case 

represent a plane that is perpendicular to the optical axis of the 

camera (i.e. the plane is exactly parallel to the image plane, see 

the middle plane in Figure 3). On the other hand, the second 

case relates to a plane that is tilted around the   axis and the 

gradient along the   axis is zero (see the left and right planes in 

Figure 3). In order to distinguish between the two special 

cases, the      value is set to Zero in the first case and the 

     value in the second case depends on the sign of the   : if 

        then      value is set to 360° whereas      value 

is set to 180° in case of       . 

Equation (1) gives good results on depth images generated 

from range cameras with sub-pixel accuracy. However, as 

shown in Figure 4, it failed to give the expected performance 

on depth images with step changes in depth values. To 

overcome the problem of less accurate depth images; Equation 

(1) is modified as follows: 

                
                 

                 
 (2) 

where                                          . In other 

words,   is set to 1 and    and    are computed according to 

(2), if both    and    equal to Zero;   is increased by one and 

(2) is computed again until both    and    are not equal to 

Zero or the maximum number of iteration      is reached. If 

     is reached and both    and    are Zero, then the pixel 

under the consideration belongs to a planar region parallel to 

the image plane (i.e. the special case 1). From the experiments, 

it is observed that        produce good results. All the 

experiments conducted in the work presented in this paper use 

                 
  

  
 

                 

                 
 (1) 
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(2) in computing      and       . Figure 4 shows the 

difference between using (1) and (2) for the computation of the 

     component on a depth image from the ABW dataset 

with a step changes in the depth value. Comparing both images 

reveals that the      component computed using (2) produce 

a better results than the      component computed using (1). 

   
Figure 4 The difference in computing      feature on a depth 

image with step changes. Left: the input range image from ABW 

dataset, middle, the      feature map computed using (1); 

Right: the      feature map computed using (2) 

The Magnitude Gradient of Depth (    ) at pixel   is 

given by the following equation: 

            √
(                 )

 

                     
 (3) 

Pixels with a      value larger than a pre-set threshold 

      are considered as jumping edges through the depth 

values. Jumping edges are important to separate adjacent 

parallel planes that belong to different depth levels such as the 

top sides of the boxes in Figure 2. In the work presented in this 

paper,       is set to     , this value is sufficient to highlight 

the jumping edges between two parallel planes with the 

distance between each other of 2 cm. It is worth to mention that 

the       value should be larger than the depth error of the 

camera used. In other words, if the camera depth error is     , 

then choosing a       value below the camera depth error will 

result in detecting a lot of pixels as false jumping edges. 

Another note to consider here is that the computation of (3) 

using the iterative way as in (2) will decrease the segmentation 

accuracy since more pixels across the real jumping edges will 

have high      values which makes it hard to distinguish the 

real edges from the spurious edges. More details about using 

     value is explained next in the clustering process. 

a) b) c) 

Figure 5 Example of the    -based planar segmentation on a real 

indoor scene; a) The left input image of a stereo camera; b) The 

     feature map; c) The final segmented image 

As the computation of the     feature is a pixel wise 

operation; the computation time for this operation is linear with 

a complexity of      where   is the number of pixels in the 

image. 

In the ideal case, the      value of pixels belonging to the 

same planar surface or to the parallel surfaces is equal. 

However, in the real-world applications and due to noise, the 

     value of pixels belong to the same plane may shift from 

the ideal value, as seen in Figure 5b, so that a clustering 

process is needed. 

B. Voting-Based Clustering 

In this paper, a modified clustering process based on a 

voting histogram is proposed. Voting based histogram, also 

known as orientation histogram, has been used in different 

works [16]-[17], and it has been adapted in this work for the 

clustering process. The adaptation of a clustering process is 

motivated by the 1D feature space of the      component. A 

mathematical model of the voting histogram could be described 

as follows: 

         {       {[     ]  
   

   
}} (4) 

where    is the number of votes per cluster  ,   is the number 

of clusters in the voting histogram. The   axis of the histogram 

is the clusters’ bins and the   axis is the number of votes per 

cluster. The clusters are distributed equally over the 1D feature 

space of the     . For instance,     will give a set of 

clusters                     . 

Figure 6 illustrates the idea using the voting histogram in 

the clustering operation. For each pixel in the computed      

image, a voting histogram with predefined number of clusters 

  is initialized for (     ) neighborhood region. Each pixel in 

the neighborhood region votes for a specific cluster in the 

histogram, and the pixel value in the output clustered image 

belongs to the cluster with the highest number of votes. 

 

Figure 6 Illustration of the voting-based clustering process 

To prevent the merging of two parallel adjacent planes into 

one cluster; pixels with      value larger than the predefined 

threshold       are removed from the clustered image (see the 

upper surfaces of the two boxes in Figure 2). The removed 

pixels are defined as unspecified pixels and they are added to 
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the segmented image as it will be explain in Section III.E. The 

output clustered image contains disjoint clusters which are 

considered as initial segmented regions. 

  

Figure 7 Clustering process on the synthetic range image shown in 

Figure 2 using different   values. Left: n = 7. Right: n = 19 

There are two parameters to be defined in the clustering 

process. The first parameter is the size of the neighborhood 

region  . On the first sight, it might be seen that the size of   is 

similar to the size of the neighborhood region   in the local 

surface normal, however, it is not the case. Unlike the local 

surface normal, changing the value   does not really affect the 

quality of the final segmented Image. Figure 7 shows the result 

of the clustering process on a synthetic image using two 

different values for  . The clustered images for both   values 

look almost identical for the three objects in the scene. This 

means that   does not have any influence on segmentation of 

range images with low noise level. However, as seen in Figure 

8, using different   values in the clustering process on range 

images of a real object will result in slightly different clustered 

images. On one hand, choosing a low   value tends to produce 

more initial regions for the same surface; on the other hand, 

using a large   value tends to produce less initial regions 

without affecting the geometrical shape of the object (i.e. edges 

and corners) and the final segmented images are not affected by 

changing the value of  . Having more initial regions in the 

clustered image will affect the processing time of the algorithm, 

though. More on that will be given in the performance 

evaluation Section IV. 

The second parameter to be defined in the voting process is 

the number of clusters,  , in the voting histogram. On one 

hand, choosing a large   value could lead to over segmentation 

problem and to an increase in the processing time. On the other 

hand, choosing a low   value could lead to under segmentation 

problem. To overcome this problem; a fixed number of clusters 

is chosen: by default, nine cluster, m     
                                    , are used to 

initialize the voting histogram. The clustering process is 

followed by a verification process to make sure that each 

disjoint clustered region contains only one planar region. The 

verification process is described in details in the next process. 

The experiments presented in this paper show that choosing 

different parameters in the clustering process does not have a 

big influence on the segmentation accuracy thanks to both 

verification process and merging process. 

The clustering process is a pixel wise operation and the 

processing time is      where   is the number of pixels in the 

image. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 8 Clustering process in segmenting a real object using 

different   values. a) The left input image from stereo camera; b) 

The corresponding      feature map; d), f) The clustered image 

of the      feature map using           respectively; c), e) 

The corresponding final segmented images 

C. Verification Process 

This process will solve any under-segmentation problem 

resulted from the clustering operation and will also increase the 

accuracy of the segmentation algorithm. The verification 

process is based on the RANSAC algorithm for outlier 

detection [15]. For each initial segmented region resulted from 

the clustering process; a 3D plane model is fitted using the 

RANSAC algorithm. 

In a simple case when the initial segmented region belongs to 

only one planar surface, only few pixels would result as outliers 

due to noise. In that case, the initial segmented region is added 

to the output image after removing the outlier pixels. The 

outlier pixels are added to the unspecified points resulted from 

the clustering process. In an under-segmented case, the number 

of outlier pixels will be high and they will form a new disjoint 
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region. The outlier disjoint region is then added to the output 

image of this process as a new disjoint region. Figure 9 shows 

an example of the verification process on an under-segmented 

region. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Figure 9 An example of the verification process on an image from 

the Perceptron dataset. a) The input range image; b) The ground 

truth image; c) The      feature map; d) The clustered image 

showing the regions on the right that are under-segmented; e) The 

under-segmented region; f) The inliers; g) The outliers; h) The 

final segmented image 

Since the verification process is executed on every region in 

the input image and since processing of a region does not 

depend on the results of other regions, the verification process 

is linear and the processing time is      where   is the 

number of regions in the image. The output of this process is an 

image that contains set of segmented regions where each region 

represents a planar surface. 

D. Merging Regions Process 

Applying a verification process on the clustered image helps 

in solving the under-segmentation problem which could be 

resulted from the clustering process. However, it could happen, 

due to noise, that a real planar surface is over-segmented. 

Hence, a merging process is needed to solve any 

over-segmentation problem. 

Two initial segmented regions, say    and   , are said to 

belong to the same planar surface if the following condition 

holds: 

 

( 
∑  (     )      

 
   

 
       ) 

&& 

        
 ̂     ̂ 

  ̂  | ̂ |
        

(5) 

where   is the number of points in the region   ,    is the 

resulted 3D plane fitted on the region   ,        is the 

function to compute the    distance of a point   to the plane 

 ,      is the threshold distance to consider the point   as 

belonging to the plane  ,      is the tolerance threshold to 

consider both regions    and    as belonging to one planar 

surface and  ̂  and  ̂  are the normals of the planar regions    

and    respectively. 

The first part of (5) is responsible to examine the distance 

between the all points in    and the 3D plane of   . 

Theoretically, if both regions    and    belong to the same 

planar surface,  (     ) should be near to Zero for each point 

in   . However, this is not the case in a real-world image where 

the distance could be up to 1 cm (depends on the depth error of 

the camera). Moreover, and due to noise, it is possible to have 

some points in region    that does not belong to the plane   , 

so that a tolerance threshold      is proposed to overcome the 

problem of noisy points.  

The second part of (5) is responsible to examine the angle 

between the both regions    and   . This condition is essential 

in preventing a small region with only a few points from being 

merged with another region where both regions do not belong 

to the same planar surface. In an ideal case, the angle between 

the two regions should be near to Zero if they both belong to the 

same planar surface. In a real case, however, the angle could be 

up to 20 degrees which depends on the depth error of the 

camera. Therefore, an angle threshold      is used to overcome 

that problem. In this paper, the value of      and      are set to 
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0.85 and 25  respectively, The value      depends on the depth 

error of the camera and should be manually set per camera type. 

In addition to the condition described in (5), two regions are 

merged if they are both adjacent (connected in the 3D space). 

The Adjacency Matrix is used in this paper to describe the 

connectivity between different regions in the image. Adjacency 

Matrix is a matrix of size    , each element in the matrix 

      represents the connectivity between the regions    and 

  . Adjacency Matrix is given by the following: 

      [

                 

   
                 

] (6) 

           {
                  

                        
 (7) 

where       is the adjacency of the two regions    and   ,   

is number of regions in the initial segmented image. It is worth 

to mention that                   which makes the Adjacency 

Matrix symmetric (        ), so that the complexity of the 

merging process during the connectivity test is reduced. 

Merging Regions Process 

// Inputs: 

Initial Segmented Regions    , Adjacency Matrix      

// Initialize: 

Merging Cost Matrix        , Neighboring Regions List        

// Recursive Merging Process 

FOR                   

        

IF    is already merged, then continue to the next region 

GET the adjacency regions from          

               

    

WHILE     

        

IF Eq. (5) holds 

COMPUTE the merging cost according to Eq. (9)       

GET the minimum merging cost for    from              

IF              

UPDATE the adjacency list       

UPDATE                

UPDATE the merging cost matrix      

SET     

MERGE    to    

ELSE 

    

Figure 10 Pseudo code of the merging regions process 

During the merging process, it is possible to get one region 

as belonging to two different surfaces which could confuse the 

merging process. Such a case is normally seen by small regions 

located between two planar surfaces. Therefore, a Merging 

Cost Matrix is proposed to solve that problem. A Merging Cost 

Matrix is of size    , each element in the Merging Cost 

Matrix,          , represents the cost of merging region    with 

  . The merging cost matrix is given by the following: 

            [

                   

   
                   

] (8) 

           {
                             

              
 (9) 

           
∑  (     )

 
   

 
 (10) 

If a region    is to be merged with two regions, say     and 

   , the Merging Cost Matrix is examined and the region    is 

merged to the region that produces the lowest merging cost. 

Figure 10 shows a pseudo code of the merging process. 

The merging process is built in a recursive manner; each 

initial segmented region is tested with all the neighboring 

connected regions. If two regions belong to one planar surface, 

then both are merged. This process is iterative and it is repeated 

until no more regions are merged. The processing time for this 

process is      , where   is the number of regions in the 

input set. 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 11 Example image from the OSD dataset [18] showing the 

result of the re-assignment step. a) The RGB input image; b) The 

segmented images resulted from the merging process; c) The 

intersection lines between the segmented planes; d) The result of 

post processing step 

E. Post Processing 

The post-processing step is responsible to add to the 

segmented image resulted from the merging process the 

unspecified points which are removed as having high      

values and pixels defined as outliers in the verification process. 

Unspecified points that are inside the contour of a segmented 
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region are added to that region and points that lay on the 

boundary between two regions are assigned to the nearer 

region. 

An additional step is added to the post-processing process 

which is aimed to fine tuning of the boundaries between the 

segmented regions to increase the segmentation accuracy. The 

additional step is similar to what has been used in the UE 

method presented in [12]. The intersection line of two adjacent 

planar regions is computed and re-projected into the 2D image 

space. The boundary pixels between the two regions are then 

re-assigned based on the position from the intersection line. 

Suppose the line      is the 2D projected line resulted from 

the intersection of both regions    and     in the 3D space. 

Pixels in region    located on the opposite side of the line      

from the centroid of    are removed from    and re-assigned to 

the region   . The same process is executed on the region   . 

The experiments show that the implementation of the 

re-assignment step increases the quality of the segmentation, 

especially in the case of segmentation of the planar regions 

from cylindrical and curved surfaces as seen in Figure 11. Note 

that the re-assignment step is more evident on cylindrical 

objects compared to cuboid objects. 

The processing time in this process is       where   is the 

number of regions in the image.  

IV. PERFORMANCE EVALUATION 

Three different sets of experiments were conducted and the 

results are presented in this section. The first set of experiments 

evaluates the performance of the proposed algorithm on both 

the ABW dataset and Perceptron dataset. It also compares the 

results of the    -based algorithm to other state-of-the-art 

algorithms. The second set of experiments evaluates the 

robustness of the proposed algorithm to the change of the 

clustering parameters (the number of clusters in the clustering 

histogram ( ) and the clustering window size ( )). The third 

set of experiments compares the results of the proposed 

algorithm with other algorithms applied on depth images 

computed from stereo camera of a typical top-table scenario, 

which include planar and cylindrical objects. 

Each image in the Perceptron dataset [11] and ABW dataset 

[10] contains up to five polyhedral objects placed on a 

supported horizontal plane. The datasets were randomly 

divided into two sub-sets: 10 images for training and 30 images 

for testing. Figure 12 shows the results of the    -based 

algorithm on two images, one from the ABW dataset and one 

from the Perceptron dataset. The    -based algorithm is 

evaluated on the test images of the two datasets using set of 

parameters that are tuned manually to give the best results. The 

set of parameters are (      ,       ,        ) for the 

ABW and  (      ,      ,       ) for the Perceptron. 

In order to evaluate the performance of the proposed 

algorithm, two different metrics are used. The first metric 

evaluates the algorithm on the pixel level. Let    be the ground 

truth region and    is the corresponding segmented region 

from the proposed algorithm. Let            be the 

overlapping pixels (True Positive),             and 

            are the False Positive and False Negative pixels 

respectively. Then, 

      
 

 
∑

   

  

 

   

       
 

 
∑

   

  

 

   

      (11) 

are the True Positive Rate (sensitivity) and False Positive Rate 

(1-precision) respectively,   is the number of surfaces in each 

image. 

a) b) c) 

d) e) f) 

Figure 12 Two different images from both the ABW dataset (top) 

and Perceptron dataset (bottom). a),d) The input range image; b), 

e) The ground truth image; c), f) The final segmented image using 

the    -based algorithm 

 

 

Figure 13: The True Positive Rate (TPR) and the False Positive 

Rate (FPR) for each image in the ABW dataset (top) and for each 

image in the Perceptron dataset (bottom) using the    -based 

algorithm 
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Figure 13 shows the result of the    -based algorithm on 

each image in both datasets using the described metric. As 

evident, the proposed algorithm managed to segment correctly 

in average 92.6% of pixels in the ABW and 90.6% of the pixels 

in the Perceptron dataset. The average False Positive Rate is 

5.6% and 8.6% in the ABW and Perceptron datasets 

respectively. 

The second metric used to measure the performance of the 

proposed algorithm is described in [12]. There are five types of 

segmentation outputs that have been considered: correct 

segmentation, over-segmentation, under-segmentation, missed 

and noise regions. 

Let    be the area (the number of pixels) of the manual 

segmented region in the ground truth image and    is the area 

of the corresponding segmented region resulted from the used 

segmentation algorithm. Let            represents the 

area of the intersection of both regions    and   .        

represents the percentage of the intersection region     with 

respect to the segmented region   .        represents the 

percentage of the intersection region     with respect to the 

ground truth region   . An object is called to be correct 

segmented if and only if 

 
   

  

      
   

  

    (12) 

where   is the percentage threshold. A lower value of   will 

relax the definition of a correct-segmented object. 

 
a) 

 
b) 

 
c) 

Figure 14 a) Correct segmentation; 

b) Over segmentation; c) Under segmentation 

An instance of over-segmented object is defined when a 

region in the ground truth image is segmented into a set of 

regions                in the segmented image fulfilling the 

following condition:  

 
    

   

             
∑     

 
   

  

   (13) 

where     
 is the intersection between a region    

 and the 

corresponding ground truth region   .   is the number of 

regions resulted from the segmentation algorithm where the 

union of them makes the corresponding ground truth region   . 

Similarly, an instance of under segmentation is defined when a 

set of regions                 in the ground truth image are 

merged into one region in the segmented image as follows: 

 
∑     

 
   

  

      
    

   

          (14) 

A missed region is defined when a ground truth region    

does not participate in any instance of correct-segmentation, 

over-segmentation or under-segmentation while a noise region 

is defined when a region in the segmented images does not have 

any correspondence in the ground truth image. Figure 14 

shows an example of the correct segmentation, over 

segmentation and under segmentation. 

Figure 15 shows the results of the GoD-based algorithm 

using the second metric on the ABW and the Perceptron 

datasets through the whole threshold value range            . 

 

 

Figure 15 The    -based algorithm results on both the 

Perceptron dataset (top) and ABW dataset (bottom) as described 

by the second metric. GT in the figures is the ground truth value 

for the correct segmented regions 

TABLE I and TABLE II describe the performance of the 

   -based algorithm in comparison to other algorithms that 

have been evaluated on the same datasets. The results are 

compared at the threshold level      . The algorithms used 

for the comparison are: USF (surface growing algorithm [12]), 

WSU (principal components clustering [12]), UB (region 

growing using scan line segmentation [12]), UE (Gaussian and 

mean curvature clustering [12]), EG (edge detection based on 

scan line approximation [7]) and ML (Multi-Resolution 

Segmentation [4]). 
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On the Perceptron dataset, the    -based algorithm ranks as 

first in number of the correct segmented regions and as second 

in both the under-segmented and missed regions. On the ABW 

dataset, the proposed algorithm ranks as first in the 

under-segmented regions and as second in the over-segmented 

regions but comes slightly behind at the third place in terms of 

correct segmented regions. 

TABLE I Comparison of different algorithms on Perceptron 

dataset at threshold value 80’% (x: not available) 

Method 
Ground 

Truth 

Correct 

Seg. 
Over Seg. 

Under 

Seg. 
Missed Noise 

USF 14.6 8.9 0.4 0.0 5.3 3.6 

WSF 14.6 5.9 0.5 0.6 6.7 4.8 

UB 14.6 9.6 0.6 0.1 4.2 2.8 

UE 14.6 10.0 0.2 0.3 3.8 2.1 

EG 14.6 10.6 0.1 0.2 3.4 1.9 

ML x x x x x x 

GoD 14.6 10.7 0.4 0.1 3.6 4.4 

 

TABLE II Comparison of different algorithms on ABW dataset at 

threshold value 80’% 

Method 
Ground 

Truth 
Correct Seg. Over Seg. Under Seg. Missed Noise 

USF 15.2 12.7 0.2 0.1 2.1 1.2 

WSF 15.2 9.7 0.5 0.2 4.5 2.2 

UB 15.2 12.8 0.5 0.1 1.7 2.1 

UE 15.2 13.4 0.4 0.2 1.1 0.8 

EG 15.2 13.5 0.2 0.0 1.5 0.8 

ML 15.2 11.1 0.2 0.7 2.2 0.8 

GoD 15.2 13.2 0.3 0.2 1.1 1.8 

 

The second set of experiments is used to validate the 

robustness of the    -based algorithm regarding the change of 

the two parameters (  and  ) in the clustering process. The 

proposed algorithm was run three times using three different 

parameters set on the ABW dataset. The parameters in the first 

run were (       ,       ), in the second run were 

(         ,        ) and in the third run were (      , 

      ). As demonstrated by the results shown in Figure 16, 

the    -based algorithm shows slight change in the number of 

correct segmented regions between the three runs which proofs 

the robustness of the proposed algorithm. 

In the third experiment set, the proposed algorithm is 

compared against two different algorithms applied onto depth 

images generated from stereo vision. The two algorithms used 

for the comparison are the scan line segmentation algorithm 

and the planar segmentation function implemented in PCL [13]. 

Scan line segmentation algorithms is implemented by the 

authors of this work using 2D line model. The goal of this 

experiment is to examine the ability of other state-of-the-art 

algorithms for segmentation of planar regions of simple 

cuboids as well as of non-planar objects on depth images 

computed from stereo camera which have a low depth accuracy 

compared to range Images generated from laser scanners or 

structure light cameras. 

 

Figure 16 The number of correct segmented regions by the 

   -based algorithm on ABW dataset using three different sets 

of parameters 

Figure 17 shows three different scenes and their 

corresponding depth images. The first scene includes a simple 

cuboid object while the second scene includes two bottles one 

partially occluding the other. The third scene contains cuboids 

objects together with cylindrical object. Block matching 

algorithm [19] is used to compute stereo correspondence 

between left and right stereo images. 

Although the scan line segmentation algorithm scored good 

results on both the ABW and Perceptron datasets, the results on 

depth images computed from stereo camera show a lot of noise 

edges which makes it hard to extract close contours. That 

conclusion is supported also by the results presented in [9] 

where the quality of the segmentation is low due to noise in 

range images. PCL implementation on the other hand shows 

good results in segmenting planar regions from cuboid objects, 

but failed to segment planar regions from cylindrical objects 

even after trying to tune manually the parameters. On the other 

hand, the proposed    -based algorithm shows good results in 

segmenting planar regions from both cuboid and cylindrical 

objects. 

TABLE III shows the average processing time of each 

process in the    -based algorithm on the images shown in 

Figure 17. The processing time of    -based algorithm has 

been computed using sequential process in C++/Windows. The 

average time needed to compute the     feature on an image 

of the size (1024×768) was 30 ms. Compared to other features 

known in literature, the fastest time to compute the local surface 

normal was 4 ms [6] using the PCL on an image of the size 

160×120 and a neighborhood size of 3×3. It is worth to mention 

that PCL is hardware accelerated (GPU acceleration) library 
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while the proposed     feature has been computed using a 

sequential operation. 

   

   

   

   

   

Figure 17 Comparison of different algorithms using depth images 

computed from stereo camera. First row: left stereo input images 

(cropped); Second row: the computed depth images; Third row: 

scan line based segmentation algorithm; Forth row: planar 

segmentation using PCL library; Last row: planar segmentation 

using the proposed    -based segmentation 

The computation of the     feature and the total 

processing time of the proposed algorithm could be accelerated 

using multi-thread process. Computing the     feature and the 

clustering process could be parallelized since both operations 

are pixel-wise operation and the processing time would be 

 (
 

 
) where   is the number of pixels in the image and   is 

the number of threads used for the process. The verification 

process and the post-processing process could be also 

parallelized using multi-thread process since both of them are 

region-wise operations and the processing of one region does 

not depend on the results of other regions. Hence, the 

processing time for the verification process and post-process 

would be  (
 

 
)  and  (

  

 
)  respectively where   is the 

number of regions in the image and   is the number of threads 

used for the process. However, the bottleneck in the processing 

time of the proposed algorithm is the merging process. The 

current implementation of the merging process does not allow 

for a parallelization process. The processing time of the 

merging process depends highly on two factors: the number of 

initial segmented regions resulted from the clustering and 

verification processes and the number of the ground truth 

regions in the range image. In the case where the input range 

image is noisy (like the Perceptron range images), the number 

of the initial segmented regions will be high so that larger 

processing time is needed for the merging process due to its 

iterative nature. 

TABLE III The average processing time of the processing steps pf 

the    -based algorithm applied on the images shown in Figure 

17 

Process GoD Clust. Ver. Merg. Post 

Average 

Time (s) 
0.03 0.7 1.2 2.5 0.3 

V. CONCLUDING REMARKS 

In this paper, a new algorithm for segmentation of planar 

regions from depth images is presented. The new algorithm is 

based on the novel Gradient of Depth feature (    ), 

accordingly, the proposed algorithm is to be called    -based 

planar segmentation algorithm. In contrast to the local surface 

normal, the     feature is computed in the 2D image space 

(i.e. directly on the depth image while the local surface normal 

is computed in the 3D point cloud space). Hence, the     

feature is faster to compute and less complex than the local 

surface normal which is considered as the state-of-the-art 

feature. The feature space of the proposed     feature is 1D 

which makes it convenient for clustering algorithms. As 

evidenced by the presented results, the presented    -based 

algorithm is robust to parameters changes and produces 

accurate results thanks to both verification and merging 

processes. In terms of segmentation accuracy, the    -based 

algorithm meets the performance of other state-of-the-art 

algorithms and in some cases, it outperforms them. It is even 

able to segment planar regions from depth images computed 

from stereo camera which are known for their high depth error 

on which other state of art algorithms fails. 

Accordingly to the presented performances, the    -based 

algorithm could be utilized in robot vision to segment planar 

regions from different surfaces (planar, cylindrical and curved) 

in different user support scenarios using different camera types. 

As prove of the robustness of the algorithm in segmenting 

planar regions from different cameras in different scenarios; the 

   -based algorithm has been implemented in the assistive 

robotic system “FRIEND” to develop a stereo-based book 

segmentation algorithm in library scenario [2]. 
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A limitation of the presented algorithm is the processing time 

in the merging process. The current implementation of the 

merging process does not allow for a parallelization process. 

Therefore, the authors are already exploring and evaluating 

other implementations for the merging process which allow the 

parallelization of the process. It is also planned to parallelize 

the processing of the algorithm to bring it to the real-time 

processing. 
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