UN
d

121ta

The Journal of Instrumentation, Automation and Systems

Robust Depth-Based Planar Segmentation Algorithm
Based on Gradient of Depth Feature

Bashar Enjarini and Axel Graser
IAT Institute, Bremen University, Germany

Abstract—In this paper, a new algorithm for segmentation of
planar regions from depth images is proposed. The development of a
new segmentation algorithm was motivated by the results of other
state-of-the-art algorithms which are optimized to segment depth
images acquired by the laser scanners or structure light cameras and
which however, have delivered low accuracy results when applied on
depth images computed from stereo cameras. The proposed planar
segmentation algorithm is based on a novel feature to be called
Gradient of Depth feature (GoD). The proposed GoD feature is a
parameter-free and it is computed in the two-dimensional (2D) image
space. The later makes it, in comparison to local surface normal, easy
to compute in terms of complexity and faster to compute in terms of
computational time. The proposed GoD feature is implemented into an
algorithm which utilizes the one-dimensional (1D) feature space of the
GoD feature which resulted in increasing the robustness of the
algorithm to parameters change. The intensive experimental results
presented in this paper confirm the robustness of the proposed
algorithm in segmentation of the planar regions of planar and
non-planar (i.e. cylindrical or curved) objects in different types of
images and in different scenarios. In terms of segmentation accuracy,
the GoD-based algorithm meets or outperforms the performance of
other state-of-the-art algorithms.

Keywords—~Planar segmentation, gradient of depth, depth image,
robot vision. service robot.

. INTRODUCTION

HE importance of the service robots is increasing every day.

They are used to support care for elderly citizens and those
in need of care to live independently on their own in their
homes for longer [1]. They are also developed as support
systems for paralyzed individuals to help them to go back to
professional life [2].

Working in a human environment imposes a direct
challenge to the service robots in sensing and understanding the
surrounding scene. A possible solution for decreasing the
complexity of understanding the sensed scene for the robot is to
segment the scene into a set of planar regions. Usually, most of
the objects in the surroundings of the robots are flat, or can be
decomposed into planar regions [3].

There are mainly two features used in literature for the
segmentation process: local surface normal and scan line
segmentation. The local surface normal at a point on a surface
is a vector that is perpendicular to the tangent plane to that

Corresponding author: B. Enjarini (e-mail: enjarini@iat.uni-bremen.de).
This paper was submitted on February 10, 2014; revised on July 20, 2014; and
accepted on July 20, 2014.

surface at that point [4]-[6]. The surface normal for each point
is computed by fitting a 3D plane to the nearest k neighborhood
points. Scan line segmentation technique, on the other hand, is
used to detect edges between different planar regions in depth
images [7]-[9]; each scan line (row, column and diagonal) is
divided into different segments based on the distance between
the fitted model (polynomial function) and the points on the
scan line.

This paper presents a novel feature, so-called Gradient of
Depth feature (GoD). In contrary to the previous features, the
proposed Gradient of Depth (GoD) feature is parameter-free
and it is computed in the 2D image space which makes it,
compared to local surface normal, easier to compute in terms of
complexity and faster in terms of computational time. The
proposed feature is defined by two components, the Magnitude
Gradient of Depth (MGoD) and the Directional Gradient of
Depth (DGoD). The DGoD value relates to the 3D orientation
of the plane while the MGoD value relates to the jumping edge
through the depth levels. The feature space of the DGoD
component is one-dimension [0° 360°] which makes the GoD
feature convenient for clustering algorithms. The GoD feature
is implemented into a robust algorithm which has many
advantages over the other related algorithms: In addition to the
high segmentation accuracy, the proposed algorithm is not
limited to segmentation of the planar objects, but also can be
used for segmentation of the cylindrical and curved objects.
Moreover, the algorithm is robust to parameters change which
makes it more convenient to be used for segmentation of
different images captured in different scenarios. The ABW
dataset [10], Perceptron dataset [11] as well as depth images
taken from a real-world scenario were used to evaluate the
performance of the proposed GoD -based algorithm and to
compare it to other state-of-the-art algorithms. As confirmed by
the presented results; the proposed algorithm outperforms other
state-of-the-art algorithms. In terms of segmentation accuracy,
the proposed algorithm meets and, in some cases, outperforms
state-of-the-art algorithms. In terms of robustness, the proposed
algorithm manages to segment correctly planar regions of
cylindrical and curved objects in depth images computed from
stereo camera in which other segmentation algorithms failed.

Il. STATE OF THE ART

Planar segmentation algorithms can be classified into three
types based on the framework used for the segmentation
process. These are: region growing algorithms, clustering

The Journal of Instrumentation, Automation and Systems

algorithms, and edge detection algorithms. In the edge
detection algorithms; the edges between different regions are
computed using the scan line technique. From the computed
edge image; close boundaries are extracted where each close
boundary refers to a segmented planar region [8]. In the region
growing framework, neighboring points are merged into
adjacent regions based on some similarity conditions [5] while
clustering algorithms tends to cluster different points with
similar features into one cell in the feature space. A merging
process is then implemented to merge different cells into one
plane [6].

The first full comparison of different planar segmentation
methods was given in [12]. Four different algorithms have been
evaluated using the ABW dataset [10] and Perceptron dataset
[11]. As reported in [12], UE method which is based on the
local surface normal and a combination framework of
clustering and region growing is ranked as first in terms of
correct segmentation. In the UE method; the mean and the
Gaussian curvature for each point in the point cloud is
estimated and each point is then assigned to a cluster based on
the combined signs of both mean and curvature values. Each
cluster is considered as an initial region, and a region growing
process is implemented to add adjacent pixels to the initialized
regions based on some similarity conditions (i.e. 3D distance
and the normal difference between the point and the region).
However, a major drawback of such algorithm is the number of
parameters to tune (nearly twelve parameters) that should be
re-tuned when using different camera/scene.

The second best algorithm reviewed in [12] is called UB
method and it is based on the scan line segmentation and region
growing algorithm. Each row, column and diagonal in the depth
image is divided into different line segments. A seed region is
defined as a triple of line segments on three adjacent scan lines
that satisfy conditions with respect to a minimum length, a
minimum overlap, and a maximum distance between the
neighboring points on two adjacent scan lines. This seed region
grows by adding adjacent line segments which satisfy the
perpendicular distance condition between the end points of the
line segment and planar equation of the region.

In [7], an improvement to the UB algorithm was proposed
which resulted in a better performance on both the ABW and
Perceptron datasets. The basic idea behind the algorithm in [7]
is based on detecting the edges between the different regions
using the scan line approximation technique. The planar
regions are then extracted by searching the close boundaries in
the resulted edge image. To overcome the problem of the open
boundaries produced by the algorithm, an iterative process
based on dilation and planar verification is performed on the
edge image [8]. Similar to UB method, another algorithm
presented in [9] uses the scan lines and a Flood Fill algorithm to
segment planar regions from noisy input range data.

Recent applications and algorithms, however, are based
mainly on the local surface normal feature. In [5] the point
cloud of industrial installations is segmented using the region
growing framework. The surface normal alongside with its

residual are computed for each point, and points with minimum
residuals are defined as seed points. Points are merged into
adjacent regions if the difference in angles between the normal
of a point and the seed point of its adjacent region is lower than
a predefined threshold. Another segmentation algorithm that is
based on the local surface normal and voxel grid clustering was
used in [6] and implemented in the Point Cloud Library (PCL)
[13]. Two clustering steps are used to segmenting the local
surface normal: first, initial clusters are defined in the normal
space from points whose surface normal fall in the same cell
and second, the initialized clusters are re-defined in the distance
space by separating clusters which represent more than one
plane. In [14], the presented algorithm uses a combination of
Mean Shift segmentation and Graph theory to segment the
point cloud. However, performance evaluation on a known
dataset is missing in both [6] and [14]. In [4], a
Multi-Resolution plane segmentation of 3D point cloud is
proposed where the cloud is sampled at different resolutions
and at each resolution planar regions are extracted using Hough
transform. The presented approach shows good results,
however it failed in segmentation of the small planar regions.

Each of the previous features has its own limitation and
drawbacks. The local surface normal feature is parameter
sensitive; the size of the neighborhood for each point in the
input data plays an essential role in the performance of the
algorithm; a small value will result in noisy normals while a big
value will lead to diminishing of sharp features such as edges
and corners. Another drawback is the expensive processing
time needed to compute the normal for each point in the input
data by fitting planar model to k neighborhood points. On the
other hand, using the scan line segmentation does not guarantee
to extract close boundaries. The limitation of using the scan line
segmentation technigque on depth images computed from stereo
camera was also confirmed in the experiments presented in this
paper. As given in Section 1V, it failed to produce a close
boundary even in the case of a simple box-like object.
Moreover, the algorithm produces a lot of noise edges.

The development of a new planar segmentation algorithm
was motivated by the results from other state-of-the-art
algorithms which are tailored to segment depth images
generated from the laser scanners and structure light cameras,
but failed to segment depth images computed from stereo
camera of normal textured objects which are usually present in
many indoor scenarios.

I1l. GoD-BASED PLANAR SEGMENTATION ALGORITHM

The GoD-based planar segmentation algorithm is depicted
in Figure 1. The Input to the algorithm is a depth image; that
includes depth images taken using laser scanner, structure light
cameras or depth images computed from stereo camera.
However, low resolution depth images (below 200x 200 pixels)
with a high level of noise generated from Time of Flight (ToF)
cameras (i.e. SwisRanger 3D camera) are considered
challenging to be segmented by the proposed algorithm.

The algorithm computes at first the Gradient of Depth
(GoD) feature from the input depth image. To overcome the
problem of noise in depth images and to take the advantage of
the 1D feature space; a voting-based clustering process is
utilized followed by a verification process. The verification
process is based on RANSAC outlier detection [15] and has
two benefits: 1) it helps to avoid under-segmentation that could
result from the clustering process and 2) it makes the proposed
algorithm robust to parameters change and possible for the use
in wide range of applications. Over-segmentation problem is
solved by using a region merging process which tends to merge
over-segmented regions based on the 3D distance between two
regions. A post processing step which includes adding non
processed pixels and fine tuning of the regions boundary is also
implemented to increase the accuracy of the segmentation.

GoD feature

DGoD
Depth Voting-based Verification
—> \ —>]
Image Clustering Process
MGoD
Region
. Post Segmented
Merging —>

Processing Planar Regions

Process

Figure 1 Block diagram of the GoD-based Planar Segmentation
algorithm

A. Gradient of Depth Feature

The Gradient of Depth (GoD) feature is computed in the
depth image space. The GoD feature for each pixel p is defined
by two components: Magnitude Gradient of Depth (MGoD) and
Directional Gradient of Depth (DGoD). The DGoD value at
pixel p is computed using the following equation:

a4y _pG+1,x)-p(y—1,x)

DGoDy,y) = tan

ax poxtD-pox—1 Y

where p(y, x) is the pixel value (i.e. depth value) at y image
row and x image column coordinate.

Figure 2 a) Synthetic range image; b) MGoD image (thresholded
for clarity); c) DGoD image; d) Clustered image

J Instrumentation, Automation and Sys., 2014, Vol. 1

The output of (1) is in the range of [0° 360°]. Figure 2
illustrates the DGoD values computed for pixels of a synthetic
range image. The range image contains two boxes on the left
where one box occludes the other, a cylindrical object in the
middle and a spherical object on the right of the image. As it
can be seen, pixels belonging to the same planar surface and
parallel surfaces have the same DGoD values while pixels
belong to different surfaces, which are not parallel, have
different DGoD values.

Figure 3 Special case of three planes, see the text for description

However, there are two special cases when computing the
DGoD value that should be taken into consideration:

1. dx=0&dy=0
2. dx#0&dy=0

Figure 3 illustrates an example on the two special cases.
The DGoD value in both cases according to (1) is equal to zero;
however, each case belongs to a different plane. The first case
represent a plane that is perpendicular to the optical axis of the
camera (i.e. the plane is exactly parallel to the image plane, see
the middle plane in Figure 3). On the other hand, the second
case relates to a plane that is tilted around the X axis and the
gradient along the Y axis is zero (see the left and right planes in
Figure 3). In order to distinguish between the two special
cases, the DGoD value is set to Zero in the first case and the
DGoD value in the second case depends on the sign of the dx: if
dx > 0 then DGoD value is set to 360° whereas DGoD value
is set to 180°in case of dx < 0.

Equation (1) gives good results on depth images generated
from range cameras with sub-pixel accuracy. However, as
shown in Figure 4, it failed to give the expected performance
on depth images with step changes in depth values. To
overcome the problem of less accurate depth images; Equation
(1) is modified as follows:

P +ix)—p(y—ix)

p(,x+0) —p@y,x—1i) @

DGoDy(y 5y = tan

where i = {1,....004x || (dx # 0&dy # 0)}. In other
words, i is set to 1 and dx and dy are computed according to
(2), if both dy and dx equal to Zero; i is increased by one and
(2) is computed again until both dx and dy are not equal to
Zero or the maximum number of iteration i,,,, is reached. If
imax 1S reached and both dx and dy are Zero, then the pixel
under the consideration belongs to a planar region parallel to
the image plane (i.e. the special case 1). From the experiments,
it is observed that i,,,, =5 produce good results. All the
experiments conducted in the work presented in this paper use

The Journal of Instrumentation, Automation and Systems

(2) in computing DGoD and i,,,, = 5. Figure 4 shows the
difference between using (1) and (2) for the computation of the
DGoD component on a depth image from the ABW dataset
with a step changes in the depth value. Comparing both images
reveals that the DGoD component computed using (2) produce
a better results than the DGoD component computed using (1).

Figure 4 The difference in computing DGoD feature on a depth
image with step changes. Left: the input range image from ABW
dataset, middle, the DGoD feature map computed using (1);
Right: the DGoD feature map computed using (2)

The Magnitude Gradient of Depth (MGoD) at pixel p is
given by the following equation:

+p@,x+1) —pQy,x —1))?

Pixels with a MGoD value larger than a pre-set threshold
Tucop are considered as jumping edges through the depth
values. Jumping edges are important to separate adjacent
parallel planes that belong to different depth levels such as the
top sides of the boxes in Figure 2. In the work presented in this
paper, Tygop 1S S€t to 2 cm, this value is sufficient to highlight
the jumping edges between two parallel planes with the
distance between each other of 2 cm. It is worth to mention that
the Tygop Value should be larger than the depth error of the
camera used. In other words, if the camera depth error is 1 cm,
then choosing a Ty¢,p Value below the camera depth error will
result in detecting a lot of pixels as false jumping edges.
Another note to consider here is that the computation of (3)
using the iterative way as in (2) will decrease the segmentation
accuracy since more pixels across the real jumping edges will
have high MGoD values which makes it hard to distinguish the
real edges from the spurious edges. More details about using
MGoD value is explained next in the clustering process.

MGoDy(y) = J PO+ -p0-10) g

a)

Figure 5 Example of the GoD-based planar segmentation on a real
indoor scene; a) The left input image of a stereo camera; b) The
DGoD feature map; c) The final segmented image

As the computation of the GoD feature is a pixel wise
operation; the computation time for this operation is linear with

a complexity of O(N) where N is the number of pixels in the
image.

In the ideal case, the DGoD value of pixels belonging to the
same planar surface or to the parallel surfaces is equal.
However, in the real-world applications and due to noise, the
DGoD value of pixels belong to the same plane may shift from
the ideal value, as seen in Figure 5b, so that a clustering
process is needed.

B. Voting-Based Clustering

In this paper, a modified clustering process based on a
voting histogram is proposed. Voting based histogram, also
known as orientation histogram, has been used in different
works [16]-[17], and it has been adapted in this work for the
clustering process. The adaptation of a clustering process is
motivated by the 1D feature space of the DGoD component. A
mathematical model of the voting histogram could be described
as follows:

hyoting = {Vc; Vc € {[0: m— 1] x 156_01}} 4)

where V. is the number of votes per cluster ¢, m is the number
of clusters in the voting histogram. The X axis of the histogram
is the clusters’ bins and the Y axis is the number of votes per
cluster. The clusters are distributed equally over the 1D feature
space of the DGoD. For instance, m = 5 will give a set of
clusters ¢ = {0,90,180,270,360}.

Figure 6 illustrates the idea using the voting histogram in
the clustering operation. For each pixel in the computed DGoD
image, a voting histogram with predefined number of clusters
m is initialized for (n x n) neighborhood region. Each pixel in
the neighborhood region votes for a specific cluster in the
histogram, and the pixel value in the output clustered image
belongs to the cluster with the highest number of votes.

NxN neighborhood
region

Figure 6 Illustration of the voting-based clustering process

To prevent the merging of two parallel adjacent planes into
one cluster; pixels with MGoD value larger than the predefined
threshold Ty, are removed from the clustered image (see the
upper surfaces of the two boxes in Figure 2). The removed
pixels are defined as unspecified pixels and they are added to

the segmented image as it will be explain in Section Il1.E. The
output clustered image contains disjoint clusters which are

considered as initial segmented regions.

Figure 7 Clustering process on the synthetic range image shown in
Figure 2 using different n values. Left: n = 7. Right: n =19

Ce¢

There are two parameters to be defined in the clustering
process. The first parameter is the size of the neighborhood
region n. On the first sight, it might be seen that the size of n is
similar to the size of the neighborhood region k in the local
surface normal, however, it is not the case. Unlike the local
surface normal, changing the value n does not really affect the
quality of the final segmented Image. Figure 7 shows the result
of the clustering process on a synthetic image using two
different values for n. The clustered images for both n values
look almost identical for the three objects in the scene. This
means that n does not have any influence on segmentation of
range images with low noise level. However, as seen in Figure
8, using different n values in the clustering process on range
images of a real object will result in slightly different clustered
images. On one hand, choosing a low n value tends to produce
more initial regions for the same surface; on the other hand,
using a large n value tends to produce less initial regions
without affecting the geometrical shape of the object (i.e. edges
and corners) and the final segmented images are not affected by
changing the value of n. Having more initial regions in the
clustered image will affect the processing time of the algorithm,
though. More on that will be given in the performance
evaluation Section 1V.

The second parameter to be defined in the voting process is
the number of clusters, m, in the voting histogram. On one
hand, choosing a large m value could lead to over segmentation
problem and to an increase in the processing time. On the other
hand, choosing a low m value could lead to under segmentation
problem. To overcome this problem; a fixed number of clusters
is chosen: by default, nine cluster, m =9,
i = {0,45,90,135,180,225,270,315,360} , are used to
initialize the voting histogram. The clustering process is
followed by a verification process to make sure that each
disjoint clustered region contains only one planar region. The
verification process is described in details in the next process.

The experiments presented in this paper show that choosing
different parameters in the clustering process does not have a
big influence on the segmentation accuracy thanks to both
verification process and merging process.

The clustering process is a pixel wise operation and the
processing time is O(N) where N is the number of pixels in the
image.

J Instrumentation, Automation and Sys., 2014, Vol. 1

€) f)

Figure 8 Clustering process in segmenting a real object using
different n values. a) The left input image from stereo camera; b)
The corresponding DGoD feature map; d), f) The clustered image

of the DGoD feature map using n = 11,17 respectively; c), e)
The corresponding final segmented images

C. Verification Process

This process will solve any under-segmentation problem
resulted from the clustering operation and will also increase the
accuracy of the segmentation algorithm. The verification
process is based on the RANSAC algorithm for outlier
detection [15]. For each initial segmented region resulted from
the clustering process; a 3D plane model is fitted using the
RANSAC algorithm.

In a simple case when the initial segmented region belongs to
only one planar surface, only few pixels would result as outliers
due to noise. In that case, the initial segmented region is added
to the output image after removing the outlier pixels. The
outlier pixels are added to the unspecified points resulted from
the clustering process. In an under-segmented case, the number
of outlier pixels will be high and they will form a new disjoint

The Journal of Instrumentation, Automation and Systems

region. The outlier disjoint region is then added to the output
image of this process as a new disjoint region. Figure 9 shows
an example of the verification process on an under-segmented
region.

9) h)

Figure 9 An example of the verification process on an image from
the Perceptron dataset. a) The input range image; b) The ground
truth image; c) The DGoD feature map; d) The clustered image
showing the regions on the right that are under-segmented; €) The
under-segmented region; f) The inliers; g) The outliers; h) The
final segmented image

Since the verification process is executed on every region in
the input image and since processing of a region does not
depend on the results of other regions, the verification process
is linear and the processing time is O(N) where N is the
number of regions in the image. The output of this process is an
image that contains set of segmented regions where each region
represents a planar surface.

D. Merging Regions Process

Applying a verification process on the clustered image helps
in solving the under-segmentation problem which could be
resulted from the clustering process. However, it could happen,
due to noise, that a real planar surface is over-segmented.
Hence, a merging process is needed to solve any
over-segmentation problem.

Two initial segmented regions, say R; and R;, are said to
belong to the same planar surface if the following condition
holds:

Yo d(pi'D]) < Tais
N > Ttol

&& ©)
1 ﬁl " ﬁ]

(cos™ < Tang)

17,117
where N is the number of points in the region R, D; is the
resulted 3D plane fitted on the region R;, d(p,D) is the
function to compute the 3D distance of a point p to the plane
D, Ty is the threshold distance to consider the point p as
belonging to the plane D, T, is the tolerance threshold to
consider both regions R; and R, as belonging to one planar
surface and 7, and 7; are the normals of the planar regions R,
and R, respectively.

The first part of (5) is responsible to examine the distance
between the all points in R; and the 3D plane of R;.
Theoretically, if both regions R, and R; belong to the same
planar surface, d(p;, D;) should be near to Zero for each point
in R;. However, this is not the case in a real-world image where
the distance could be up to 1 cm (depends on the depth error of
the camera). Moreover, and due to noise, it is possible to have
some points in region R, that does not belong to the plane Dy,
so that a tolerance threshold T;,,; is proposed to overcome the
problem of noisy points.

The second part of (5) is responsible to examine the angle
between the both regions R; and R;. This condition is essential
in preventing a small region with only a few points from being
merged with another region where both regions do not belong
to the same planar surface. In an ideal case, the angle between
the two regions should be near to Zero if they both belong to the
same planar surface. In a real case, however, the angle could be
up to 20 degrees which depends on the depth error of the
camera. Therefore, an angle threshold Tg,,, is used to overcome

that problem. In this paper, the value of T;,; and Ty, are set to

0.85 and 25° respectively, The value T,;; depends on the depth
error of the camera and should be manually set per camera type.

In addition to the condition described in (5), two regions are
merged if they are both adjacent (connected in the 3D space).
The Adjacency Matrix is used in this paper to describe the
connectivity between different regions in the image. Adjacency
Matrix is a matrix of size M x M, each element in the matrix
(i,j) represents the connectivity between the regions R; and
R;. Adjacency Matrix is given by the following:

adj(o,o) adj(O,M)
apj=| k (6)
adju,o) adjm,my
. 1 ifRNR %0
adis: ~ = { 7
Jan 0 otherwise O

where R; N R; is the adjacency of the two regions R; and R;, M
is number of regions in the initial segmented image. It is worth
to mention that adj; j, = adj;;, which makes the Adjacency
Matrix symmetric (AD] = ADJT), so that the complexity of the
merging process during the connectivity test is reduced.

Merging Regions Process

/I Inputs:
Initial Segmented Regions {R}, Adjacency Matrix ADJ

/I Initialize:

Merging Cost Matrix MRG « INF, Neighboring Regions List {R;} « @

/I Recursive Merging Process
FOR i = 1:length({R})
R(i) - R;
IF R; is already merged, then continue to the next region
GET the adjacency regions from ADJ - {R_.}
length({R.}) - N
1)
WHILEj < N
R(j) - Rj
IF Eq. (5) holds
COMPUTE the merging cost according to Eq. (9) — cost
GET the minimum merging cost for R; from MRG — Cost,y;,,
IF cost < costpin
UPDATE the adjacency list - {RC}
UPDATE length({R.}) » N
UPDATE the merging cost matrix - MRG
SET1-j
MERGE R; to R;
ELSE
j++

Figure 10 Pseudo code of the merging regions process

J Instrumentation, Automation and Sys., 2014, Vol. 1

During the merging process, it is possible to get one region
as belonging to two different surfaces which could confuse the
merging process. Such a case is hormally seen by small regions
located between two planar surfaces. Therefore, a Merging
Cost Matrix is proposed to solve that problem. A Merging Cost
Matrix is of size M x M, each element in the Merging Cost
Matrix, cost; j, represents the cost of merging region R; with
R;. The merging cost matrix is given by the following:

cost(g,0) costiom
Merg _Cost = : (8)
costp,0) costy,
RSS(1, if (R;,R))are merged
an by
trin =
costan { inf, otherwise ©)
Nod(pi,D
RSS(U) — ZL—O 1\(]?71]) (10)

If a region R, is to be merged with two regions, say R;; and
R;,, the Merging Cost Matrix is examined and the region R; is
merged to the region that produces the lowest merging cost.
Figure 10 shows a pseudo code of the merging process.

The merging process is built in a recursive manner; each
initial segmented region is tested with all the neighboring
connected regions. If two regions belong to one planar surface,
then both are merged. This process is iterative and it is repeated
until no more regions are merged. The processing time for this
process is O(N?), where N is the number of regions in the
input set.

i
—
ki
4

c) d)

Figure 11 Example image from the OSD dataset [18] showing the
result of the re-assignment step. a) The RGB input image; b) The
segmented images resulted from the merging process; c) The
intersection lines between the segmented planes; d) The result of
post processing step

E. Post Processing

The post-processing step is responsible to add to the
segmented image resulted from the merging process the
unspecified points which are removed as having high MGoD
values and pixels defined as outliers in the verification process.
Unspecified points that are inside the contour of a segmented

The Journal of Instrumentation, Automation and Systems

region are added to that region and points that lay on the
boundary between two regions are assigned to the nearer
region.

An additional step is added to the post-processing process
which is aimed to fine tuning of the boundaries between the
segmented regions to increase the segmentation accuracy. The
additional step is similar to what has been used in the UE
method presented in [12]. The intersection line of two adjacent
planar regions is computed and re-projected into the 2D image
space. The boundary pixels between the two regions are then
re-assigned based on the position from the intersection line.

Suppose the line L; ; is the 2D projected line resulted from
the intersection of both regions R, and R, in the 3D space.
Pixels in region R; located on the opposite side of the line L,
from the centroid of R; are removed from R, and re-assigned to
the region R;. The same process is executed on the region R;.

The experiments show that the implementation of the
re-assignment step increases the quality of the segmentation,
especially in the case of segmentation of the planar regions
from cylindrical and curved surfaces as seen in Figure 11. Note
that the re-assignment step is more evident on cylindrical
objects compared to cuboid objects.

The processing time in this process is 0(N?2) where N is the
number of regions in the image.

IV. PERFORMANCE EVALUATION

Three different sets of experiments were conducted and the
results are presented in this section. The first set of experiments
evaluates the performance of the proposed algorithm on both
the ABW dataset and Perceptron dataset. It also compares the
results of the GoD -based algorithm to other state-of-the-art
algorithms. The second set of experiments evaluates the
robustness of the proposed algorithm to the change of the
clustering parameters (the number of clusters in the clustering
histogram (m) and the clustering window size (n)). The third
set of experiments compares the results of the proposed
algorithm with other algorithms applied on depth images
computed from stereo camera of a typical top-table scenario,
which include planar and cylindrical objects.

Each image in the Perceptron dataset [11] and ABW dataset
[10] contains up to five polyhedral objects placed on a
supported horizontal plane. The datasets were randomly
divided into two sub-sets: 10 images for training and 30 images
for testing. Figure 12 shows the results of the GoD -based
algorithm on two images, one from the ABW dataset and one
from the Perceptron dataset. The GoD -based algorithm is
evaluated on the test images of the two datasets using set of
parameters that are tuned manually to give the best results. The
set of parameters are (n = 15, m = 17, Ty, = 3) for the
ABWand (n = 15, m = 9, Ty;, = 4) for the Perceptron.

In order to evaluate the performance of the proposed
algorithm, two different metrics are used. The first metric
evaluates the algorithm on the pixel level. Let R,, be the ground

truth region and S,, is the corresponding segmented region
from the proposed algorithm. Let TP, = R, NS, be the
overlapping pixels (True Positive), FP; = S,,\TP; and
FN; = R,\TP; are the False Positive and False Negative pixels
respectively. Then,

— 1Z":Tpi pR = 1Z”:Fpi
_n_lRi’ _n_lsi’ (11)
L= =

are the True Positive Rate (sensitivity) and False Positive Rate
(1-precision) respectively, n is the number of surfaces in each
image.

Figure 12 Two different images from both the ABW dataset (top)

and Perceptron dataset (bottom). a),d) The input range image; b),

e) The ground truth image; c), f) The final segmented image using
the GoD-based algorithm

T P 2 T e “Tremee-s
09+ e’ TE N / B e
- “ ‘\ ! A
Ca v
o0.8f it
0.7}
ES
© 06
g —=-TPR
8 o5l !
®
2 0.4-
[
(=%
03h
02h
01F - »
e ST e LIS P S, R S
i
0 5 16 i 20 25 30
Image No
15 -
e e a. "o s
FX I hd e i L
. < e aie- N el
d A S]

Image No
Figure 13: The True Positive Rate (TPR) and the False Positive
Rate (FPR) for each image in the ABW dataset (top) and for each
image in the Perceptron dataset (bottom) using the GoD-based
algorithm

20 25 30

Figure 13 shows the result of the GoD-based algorithm on
each image in both datasets using the described metric. As
evident, the proposed algorithm managed to segment correctly
in average 92.6% of pixels in the ABW and 90.6% of the pixels
in the Perceptron dataset. The average False Positive Rate is
5.6% and 8.6% in the ABW and Perceptron datasets
respectively.

The second metric used to measure the performance of the
proposed algorithm is described in [12]. There are five types of
segmentation outputs that have been considered: correct
segmentation, over-segmentation, under-segmentation, missed
and noise regions.

Let R, be the area (the number of pixels) of the manual
segmented region in the ground truth image and S,, is the area
of the corresponding segmented region resulted from the used
segmentation algorithm. Let 0,,, = R, N S,, represents the
area of the intersection of both regions R,, and S,,,. O,/ Sm
represents the percentage of the intersection region O,,, with
respect to the segmented region S,,. O, /R, represents the
percentage of the intersection region 0,,,, with respect to the
ground truth region R,. An object is called to be correct
segmented if and only if

Omn > T& Omn

Sm RTL

where T is the percentage threshold. A lower value of T will
relax the definition of a correct-segmented object.

M 0.,

>T (12)

o 0,

. RI’J. . Sm . ﬂmn

. R?l
a) b)

. sm1 sz

c)
Figure 14 a) Correct segmentation;
b) Over segmentation; ¢) Under segmentation

An instance of over-segmented object is defined when a
region in the ground truth image is segmented into a set of
regions {S;,1, Smz, --- Smx} in the segmented image fulfilling the
following condition:

—10,,.
>T(Viex)& ——=T (13)

where 0,,,, is the intersection between a region S, and the
corresponding ground truth region R,. x is the number of

J Instrumentation, Automation and Sys., 2014, Vol. 1

regions resulted from the segmentation algorithm where the
union of them makes the corresponding ground truth region R,,.
Similarly, an instance of under segmentation is defined when a
set of regions {R,,1, Ry, ---- Rny} in the ground truth image are
merged into one region in the segmented image as follows:

T& Omni

S n

X
i=1 Omni

>T (Viex) (14)

A missed region is defined when a ground truth region R,
does not participate in any instance of correct-segmentation,
over-segmentation or under-segmentation while a noise region
is defined when a region in the segmented images does not have
any correspondence in the ground truth image. Figure 14
shows an example of the correct segmentation, over
segmentation and under segmentation.

Figure 15 shows the results of the GoD-based algorithm
using the second metric on the ABW and the Perceptron
datasets through the whole threshold value range (0.51<7<1).

18r

——Correct
——Over
Under
— Missed
Noise
—GT

@
T

S
T

f
|
;

®» @ =
T T

Average Number of Regions
a
T

L L L i I . .
8‘5 0.55 06 085 0. 8 0.85 0.9 095 1

——Correct
16~ ——Over
Under
14+ ——Missed

- - Noise
; —GT

Average Number of Regions

.\

S .

T 1 1 S— T o — — g
8.5 0.55 08 0.65 07 0.75 08 0.85 0.9 095 1

Threshold %

Figure 15 The GoD-based algorithm results on both the
Perceptron dataset (top) and ABW dataset (bottom) as described
by the second metric. GT in the figures is the ground truth value

for the correct segmented regions

TABLE | and TABLE Il describe the performance of the
GoD-based algorithm in comparison to other algorithms that
have been evaluated on the same datasets. The results are
compared at the threshold level T = 80%. The algorithms used
for the comparison are: USF (surface growing algorithm [12]),
WSU (principal components clustering [12]), UB (region
growing using scan line segmentation [12]), UE (Gaussian and
mean curvature clustering [12]), EG (edge detection based on
scan line approximation [7]) and ML (Multi-Resolution
Segmentation [4]).

The Journal of Instrumentation, Automation and Systems

On the Perceptron dataset, the GoD-based algorithm ranks as
first in number of the correct segmented regions and as second
in both the under-segmented and missed regions. On the ABW
dataset, the proposed algorithm ranks as first in the
under-segmented regions and as second in the over-segmented
regions but comes slightly behind at the third place in terms of
correct segmented regions.

TaBLE | Comparison of different algorithms on Perceptron
dataset at threshold value 80°% (x: not available)

Method G‘I'r?LlJJtrr;d ng;e‘d Over Seg. Usnedge‘r Missed Noise
USF 14.6 8.9 0.4 0.0 5.3 3.6
WSF 146 5.9 0.5 0.6 6.7 4.8

uUB 14.6 9.6 0.6 0.1 4.2 2.8

UE 146 10.0 0.2 0.3 3.8 2.1
EG 146 10.6 0.1 0.2 3.4 1.9
ML X X X X X X
GoD 146 107 0.4 0.1 3.6 4.4

TaBLE Il Comparison of different algorithms on ABW dataset at

threshold value 80’ %
Method G.If'?ljjtrp]d Correct Seg. Over Seg. Under Seg. Missed Noise
USF 15.2 12.7 0.2 0.1 21 12
WSF 15.2 9.7 0.5 0.2 45 22
uB 15.2 12.8 0.5 0.1 1.7 21
UE 15.2 134 0.4 0.2 1.1 08
EG 15.2 13.5 0.2 0.0 15 08
ML 152 111 0.2 0.7 22 038
GoD 15.2 13.2 0.3 0.2 1.1 18

The second set of experiments is used to validate the
robustness of the GoD-based algorithm regarding the change of
the two parameters (n and m) in the clustering process. The
proposed algorithm was run three times using three different
parameters set on the ABW dataset. The parameters in the first
run were (n = 15, m = 17), in the second run were
(n=15,m = 9) and in the third run were (n = 7,
m = 9). As demonstrated by the results shown in Figure 16,
the GoD-based algorithm shows slight change in the number of
correct segmented regions between the three runs which proofs
the robustness of the proposed algorithm.

In the third experiment set, the proposed algorithm is
compared against two different algorithms applied onto depth
images generated from stereo vision. The two algorithms used

for the comparison are the scan line segmentation algorithm
and the planar segmentation function implemented in PCL [13].
Scan line segmentation algorithms is implemented by the
authors of this work using 2D line model. The goal of this
experiment is to examine the ability of other state-of-the-art
algorithms for segmentation of planar regions of simple
cuboids as well as of non-planar objects on depth images
computed from stereo camera which have a low depth accuracy
compared to range Images generated from laser scanners or
structure light cameras.

16

Run1
—Run2

Run3
—GT

=
T

J

=)
T

Average Number of correct detection
£ @

/

1 | L L | | L
8.5 0.55 0.6 0.65 0.7 075 0.8 0.85 0.9 0.85 1
Threshold %

Figure 16 The number of correct segmented regions by the
GoD-based algorithm on ABW dataset using three different sets
of parameters

Figure 17 shows three different scenes and their
corresponding depth images. The first scene includes a simple
cuboid object while the second scene includes two bottles one
partially occluding the other. The third scene contains cuboids
objects together with cylindrical object. Block matching
algorithm [19] is used to compute stereo correspondence
between left and right stereo images.

Although the scan line segmentation algorithm scored good
results on both the ABW and Perceptron datasets, the results on
depth images computed from stereo camera show a lot of noise
edges which makes it hard to extract close contours. That
conclusion is supported also by the results presented in [9]
where the quality of the segmentation is low due to noise in
range images. PCL implementation on the other hand shows
good results in segmenting planar regions from cuboid objects,
but failed to segment planar regions from cylindrical objects
even after trying to tune manually the parameters. On the other
hand, the proposed GoD-based algorithm shows good results in
segmenting planar regions from both cuboid and cylindrical
objects.

TaBLE Il shows the average processing time of each
process in the GoD-based algorithm on the images shown in
Figure 17. The processing time of GoD-based algorithm has
been computed using sequential process in C++/Windows. The
average time needed to compute the GoD feature on an image
of the size (1024x768) was 30 ms. Compared to other features
known in literature, the fastest time to compute the local surface
normal was 4 ms [6] using the PCL on an image of the size
160x120 and a neighborhood size of 3x3. It is worth to mention
that PCL is hardware accelerated (GPU acceleration) library

while the proposed GoD feature has been computed using a
sequential operation.

Figure 17 Comparison of different algorithms using depth images
computed from stereo camera. First row: left stereo input images
(cropped); Second row: the computed depth images; Third row:
scan line based segmentation algorithm; Forth row: planar
segmentation using PCL library; Last row: planar segmentation
using the proposed GoD-based segmentation

The computation of the GoD feature and the total
processing time of the proposed algorithm could be accelerated
using multi-thread process. Computing the GoD feature and the
clustering process could be parallelized since both operations
are pixel-wise operation and the processing time would be

0 (%) where N is the number of pixels in the image and P is

the number of threads used for the process. The verification
process and the post-processing process could be also
parallelized using multi-thread process since both of them are
region-wise operations and the processing of one region does

J Instrumentation, Automation and Sys., 2014, Vol. 1

not depend on the results of other regions. Hence, the
processing time for the verification process and post-process

would be 0(%) and O(N?Z) respectively where N is the

number of regions in the image and P is the number of threads
used for the process. However, the bottleneck in the processing
time of the proposed algorithm is the merging process. The
current implementation of the merging process does not allow
for a parallelization process. The processing time of the
merging process depends highly on two factors: the number of
initial segmented regions resulted from the clustering and
verification processes and the number of the ground truth
regions in the range image. In the case where the input range
image is noisy (like the Perceptron range images), the number
of the initial segmented regions will be high so that larger
processing time is needed for the merging process due to its
iterative nature.

TaBLE 11 The average processing time of the processing steps pf
the GoD-based algorithm applied on the images shown in Figure

17
Process GoD | Clust. | Ver. | Merg. | Post
Average | 503 | 07 | 12 | 25 | 03
Time (s)

V. CONCLUDING REMARKS

In this paper, a new algorithm for segmentation of planar
regions from depth images is presented. The new algorithm is
based on the novel Gradient of Depth feature (GoD),
accordingly, the proposed algorithm is to be called GoD-based
planar segmentation algorithm. In contrast to the local surface
normal, the GoD feature is computed in the 2D image space
(i.e. directly on the depth image while the local surface normal
is computed in the 3D point cloud space). Hence, the GoD
feature is faster to compute and less complex than the local
surface normal which is considered as the state-of-the-art
feature. The feature space of the proposed GoD feature is 1D
which makes it convenient for clustering algorithms. As
evidenced by the presented results, the presented GoD-based
algorithm is robust to parameters changes and produces
accurate results thanks to both verification and merging
processes. In terms of segmentation accuracy, the GoD-based
algorithm meets the performance of other state-of-the-art
algorithms and in some cases, it outperforms them. It is even
able to segment planar regions from depth images computed
from stereo camera which are known for their high depth error
on which other state of art algorithms fails.

Accordingly to the presented performances, the GoD-based
algorithm could be utilized in robot vision to segment planar
regions from different surfaces (planar, cylindrical and curved)
in different user support scenarios using different camera types.
As prove of the robustness of the algorithm in segmenting
planar regions from different cameras in different scenarios; the
GoD-based algorithm has been implemented in the assistive
robotic system “FRIEND” to develop a stereo-based book
segmentation algorithm in library scenario [2].

The Journal of Instrumentation, Automation and Systems

A limitation of the presented algorithm is the processing time
in the merging process. The current implementation of the
merging process does not allow for a parallelization process.
Therefore, the authors are already exploring and evaluating
other implementations for the merging process which allow the
parallelization of the process. It is also planned to parallelize
the processing of the algorithm to bring it to the real-time
processing.

REFERENCES

[1] “Care-O-bot”, [Online]. VIEW ITEM

[2] A. Gréser, T. Heyer, L. Fotoohi, U. Lange, H. Kampe, B. Enjarini, S.
Heyer, C. Fragkopoulos and D. Ristic-Durrant, “A Supportive FRIEND at
Work: Robotic Workplace Assistance for the Disabled”, IEEE Robotics
and Automation Magazine, To be published.

[3] A. Bartoli, “Piecewise Planar Segmentation for Automatic Scene
Modeling”, in Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition, 2011.

[4] B. Oehler, J. Stueckler, J. Well, D. Schulz and S. Behnke, “Efficient
Multi-Resolution Plane Segmentation™, in In Proceedings of the 4th
International Conference on Intelligent Robotics and Applications
(ICIRA), 2011. CrossRef

[5] T. R. Shah, “Automatic Reconstruction of Industrial Installations”,
Publications on Geodesy 62, 2006.

[6] D. Holz, S. Holzer, R. B. Rusu and S. Behnke, “Real-Time Plane
Segmentation using RGB-D Cameras”, in RoboCup Symposium, 2011.

[7] X.Jiang and H. Bunke, “Edge Detection in Range Images Based on Scan
Line Approximation”, Computer Vision and Image Understanding, Bd.
73, Nr. 2, p. 183-199, 1999. CrossRef

[8] X.Jiang and H. Bunke, “Range Image Segmentation: Adaptive Grouping
of Edges into Regions”, in Computer Vision — ACCV'98, Lecture Notes in
Computer Science, 1997. CrossRef

[9] A. Sabov and J. Krliger, “Segmentation of 3D Points from Range Camera
Data using Scanlines”, in 15th International Conference on Systems,
Signals and Image Processing, 2008.

[10] ABW, “ABW dataset”, [Online]. VIEW ITEM

[11] Perceptron, “Perceptron dataset”, [Online]. VIEW ITEM

[12] A. Hoover, G.J. Baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. B. Goldgof,
K. Bowyer, D. W. Eggert, A. Fitzgibbon and R. B. Fisher, “An
experimental comparison of range image segmentation algorithms”, IEEE
Transactions on pattern analysis and machine intelligence, 1996.
CrossRef

[13] PCL, “Point Cloud Library”, [Online]. VIEW ITEM

[14] G. M. Hegde and C. Ye, “A Recursive Planar Feature Extraction Method
for 3D Range Data Segmentation,” in IEEE International Conference on
Systems, Man, and Cybernetics, 2011.

[15] M. A. Fischer and R. C. Bolles, “Random sample consensus:A paradigm
for model fitting with applications to image analysis and automated
cartography”, Communications of the ACM, Bd. 24, Nr. 6, pp. 381-395,
1981. CrossRef

[16] F. Alhwarin, D. Ristic-Durrant and A. Graser, “VF-SIFT: Very Fast SIFT
feature matching”, in Pattern Recognition, Lecture Notes in Computer
Science, 2010. CrossRef

[17] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2005.

[18] OSD, “Object Segmentation Database (OSD)*, [Online]. VIEW ITEM

[19] T. Tao, J. C. Koo and H. R. Choi, “A fast block matching algorithm for
stereo correspondence”, IEEE Conference on Cybernetics and Intelligent

Systems, 2008.

http://www.care-o-bot.de/de/care-o-bot-3.html
http://www.cmaj.ca/cgi/external_ref?access_num=10.1007/978-3-642-25489-5_15&link_type=DOI
http://www.cmaj.ca/cgi/external_ref?access_num=10.1006/cviu.1998.0715&link_type=DOI
http://www.cmaj.ca/cgi/external_ref?access_num=10.1007/BFb0045065&link_type=DOI
http://marathon.csee.usf.edu/range/icons/ABW.html
http://marathon.csee.usf.edu/range/icons/Perc.html
http://www.cmaj.ca/cgi/external_ref?access_num=10.1109/34.506791&link_type=DOI
http://pointclouds.org/
http://www.cmaj.ca/cgi/external_ref?access_num=10.1145/358669.358692&link_type=DOI
http://www.cmaj.ca/cgi/external_ref?access_num=10.1007/978-3-642-15986-2_23&link_type=DOI
http://www.acin.tuwien.ac.at/?id=289

