Enhancing Industrial Maintenance : A Critical Examination of Predictive Analytics for Asset Reliability
Abstract
References
. Abdul-Nasiru, I. (2024). The role of change readiness in the relationship between learning organisation and successful change implementation. Journal of Organizational Change Management.
. Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On predictive maintenance in industry 4.0: Overview, models, and challenges. Applied Sciences, 12(16), 8081.
. Ahmad, R., & Kamaruddin, S. (2012). An overview of time-based and condition-based maintenance in industrial application. Computers & industrial engineering, 63(1), 135-149.
. Amelia, Z., & Sushandoyo, D. Assessment of Organization Readiness in the Implementation of Change Management (Case Study: PT. IMS).
. Asadi, M., Hashemi, M., & Balakrishnan, N. (2023). An overview of some classical models and discussion of the signature‐based models of preventive maintenance. Applied Stochastic Models in Business and Industry, 39(1), 4-53.
. AVEVA. (2022). Better together: AVEVA Predictive Analytics and the AVEVA PI System maximize mining plant ROI. In WhitePaper_AVEVA_PredictiveAnalyticsforMiningandMetals_22-10.pdf. Retrieved from https://www.aveva.com/en/products/predictive-analytics/
. Bekar, E. T., Nyqvist, P., & Skoogh, A. (2020). An intelligent approach for data pre-processing and analysis in predictive maintenance with an industrial case study. Advances in Mechanical Engineering, 12(5), 1687814020919207.
. Bravo, C., Saputelli, L., Rivas, F., Pérez, A. G., Nikolaou, M., Zangl, G., ... & Nunez, G. (2014). State of the art of artificial intelligence and predictive analytics in the E&P industry: a technology survey. Spe Journal, 19(04), 547-563.
. Brintrup, A., Pak, J., Ratiney, D., Pearce, T., Wichmann, P., Woodall, P., & McFarlane, D. (2020). Supply chain data analytics for predicting supplier disruptions: a case study in complex asset manufacturing. International Journal of Production Research, 58(11), 3330-3341.
. Chinnamgari, S. K. (2019). R Machine Learning Projects: Implement supervised, unsupervised, and reinforcement learning techniques using R 3.5. Packt Publishing Ltd.
. Cho, E., Chang, T. W., & Hwang, G. (2022). Data preprocessing combination to improve the performance of quality classification in the manufacturing process. Electronics, 11(3), 477.
. Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), 8211.
. Daneshjo, N., & Kravec, M. (2015, November). System states and requirements of reactive maintenance. In Production Management and Engineering Sciences: Proceedings of the International Conference on Engineering Science and Production Management (ESPM 2015), Tatranské Matliare, High Tatras Mountains, Slovak Republic, 16th-17th April 2015 (p. 365). CRC Press.
. Daneshjo, N., & Kravec, M. (2016). System states and requirements of reactive maintenance. Production Management and Engineering Sciences, 365.
. Drakaki, M., Karnavas, Y. L., Tziafettas, I. A., Linardos, V., & Tzionas, P. (2022). Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors: State of the art survey. Journal of Industrial Engineering and Management (JIEM), 15(1), 31-57.
. Ehrlinger, L., Lettner, C., Fragner, W., Gsellmann, G., Nestelberger, S., Rauchenzauner, F., ... & Zeindl, J. (2022, August). Data Integration, Management, and Quality: From Basic Research to Industrial Application. In International Conference on Database and Expert Systems Applications (pp. 167-178). Cham: Springer International Publishing.
. Fernandes, M., Canito, A., Bolón-Canedo, V., Conceição, L., Praça, I., & Marreiros, G. (2019). Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry. International journal of information management, 46, 252-262.
. Gackowiec, P. (2019). General overview of maintenance strategies–concepts and approaches. Multidisciplinary Aspects of Production Engineering, 2(1), 126-139.
. Gapanovich, V. A., Shubinsky, I. B., Rozenberg, E. N., & Zamyshlyaev, A. M. (2015). System of adaptive management of railway transport infrastructure technical maintenance (URRAN project). Reliability: Theory & Applications, 10(2 (37)), 30-41.
. Gillespie, A. (2015, January). Condition based maintenance: Theory, methodology, & application. In Conference: Reliability and Maintainability SymposiumAt: Tarpon Springs, FL.
. Hermansa, M., Kozielski, M., Michalak, M., Szczyrba, K., Wróbel, Ł., & Sikora, M. (2021). Sensor-based predictive maintenance with reduction of false alarms—A case study in heavy industry. Sensors, 22(1), 226.
. Karim, R., Westerberg, J., Galar, D., & Kumar, U. (2016). Maintenance analytics–the new know in maintenance. IFAC-PapersOnLine, 49(28), 214-219.
. Keleko, A. T., Kamsu-Foguem, B., Ngouna, R. H., & Tongne, A. (2022). Artificial intelligence and real-time predictive maintenance in industry 4.0: a bibliometric analysis. AI and Ethics, 2(4), 553-577.
. Krumeich, J., Jacobi, S., Werth, D., & Loos, P. (2014, June). Big data analytics for predictive manufacturing control-a case study from process industry. In 2014 IEEE international congress on big data (pp. 530-537). IEEE.
. Masani, K. I., Oza, P., & Agrawal, S. (2019). Predictive maintenance and monitoring of industrial machine using machine learning. Scalable Computing: Practice and Experience, 20(4), 663-668.
. Mobley, R. K. (2002). An introduction to predictive maintenance. Elsevier.
. Monnin, M., Abichou, B., Voisin, A., & Mozzati, C. (2011, October). Fleet historical cases for predictive maintenance. In The International Conference Surveillance (Vol. 6, pp. 25-26).
. Morales, E. F., & Escalante, H. J. (2022). A brief introduction to supervised, unsupervised, and reinforcement learning. In Biosignal processing and classification using computational learning and intelligence (pp. 111-129). Academic Press.
. Nordal, H., & El‐Thalji, I. (2021). Modeling a predictive maintenance management architecture to meet industry 4.0 requirements: A case study. Systems Engineering, 24(1), 34-50.
. Para, J., Del Ser, J., Nebro, A. J., Zurutuza, U., & Herrera, F. (2019). Analyze, sense, preprocess, predict, implement, and deploy (ASPPID): An incremental methodology based on data analytics for cost-efficiently monitoring the industry 4.0. Engineering Applications of Artificial Intelligence, 82, 30-43.
. Peng, Y., Dong, M., & Zuo, M. J. (2010). Current status of machine prognostics in condition-based maintenance: a review. The International Journal of Advanced Manufacturing Technology, 50, 297-313.
. Poór, P., Ženíšek, D., & Basl, J. (2019, July). Historical overview of maintenance management strategies: Development from breakdown maintenance to predictive maintenance in accordance with four industrial revolutions. In Proceedings of the international conference on industrial engineering and operations management, Pilsen, Czech Republic (pp. 23-26).
. Quatrini, E., Costantino, F., Di Gravio, G., & Patriarca, R. (2020). Condition-based maintenance—an extensive literature review. Machines, 8(2), 31.
. Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R. (2019). A survey of predictive maintenance: Systems, purposes and approaches. arXiv preprint arXiv:1912.07383.
. Razali, M. N., Jamaluddin, A. F., Abdul Jalil, R., & Nguyen, T. K. (2020). Big data analytics for predictive maintenance in maintenance management. Property Management, 38(4), 513-529.
. Sarnovsky, M., Bednár, P., & Smatana, M. (2017, October). Data integration in scalable data analytics platform for process industries. In 2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES) (pp. 000187-000192). IEEE.
. Sang, G. M., Xu, L., De Vrieze, P., Bai, Y., & Pan, F. (2020, June). Predictive maintenance in industry 4.0. In Proceedings of the 10th International Conference on Information Systems and Technologies (pp. 1-11).
. Selcuk, S. (2017). Predictive maintenance, its implementation and latest trends. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(9), 1670-1679.
. Serradilla, O., Zugasti, E., Rodriguez, J., & Zurutuza, U. (2022). Deep learning models for predictive maintenance: a survey, comparison, challenges and prospects. Applied Intelligence, 52(10), 10934-10964.
. Siraskar, R., Kumar, S., Patil, S., Bongale, A., & Kotecha, K. (2023). Reinforcement learning for predictive maintenance: A systematic technical review. Artificial Intelligence Review, 56(11), 12885-12947.
. Terziyan, V., & Vitko, O. (2022). Explainable AI for Industry 4.0: semantic representation of deep learning models. Procedia Computer Science, 200, 216-226.
. Tiddens, W., Braaksma, J., & Tinga, T. (2022). Exploring predictive maintenance applications in industry. Journal of quality in maintenance engineering, 28(1), 68-85.
. Wen, Y., Rahman, M. F., Xu, H., & Tseng, T. L. B. (2022). Recent advances and trends of predictive maintenance from data-driven machine prognostics perspective. Measurement, 187, 110276.
. Yan, H., Wan, J., Zhang, C., Tang, S., Hua, Q., & Wang, Z. (2018). Industrial big data analytics for prediction of remaining useful life based on deep learning. IEEE access, 6, 17190-17197.
. Zhang, W., Yang, D., & Wang, H. (2019). Data-driven methods for predictive maintenance of industrial equipment: A survey. IEEE systems journal, 13(3), 2213-2227.
. Zonta, T., Da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.