Enhancing Industrial Maintenance : A Critical Examination of Predictive Analytics for Asset Reliability

Eko Sunarno, Rizky Andrika, Agus Budiyono, Ary Setijadi Prihatmanto

Abstract


This paper critically examines the role of predictive analytics in enhancing industrial maintenance and asset reliability. As industries face increasing pressure to improve efficiency and reduce downtime, the adoption of predictive analytics offers a transformative approach to maintenance strategies. By leveraging historical and real-time data, predictive models can forecast equipment failures, optimize maintenance schedules, and extend asset lifespans. This paper explores various predictive analytics techniques, their implementation in industrial settings, and the resulting impact on maintenance practices. Through a review of current literature and case studies, we highlight the benefits, challenges, and future directions of integrating predictive analytics in industrial maintenance. Our findings suggest that while predictive analytics significantly improves asset reliability and operational efficiency, successful implementation requires overcoming technical, organizational, and data-related barriers.

References


. Abdul-Nasiru, I. (2024). The role of change readiness in the relationship between learning organisation and successful change implementation. Journal of Organizational Change Management.

. Achouch, M., Dimitrova, M., Ziane, K., Sattarpanah Karganroudi, S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On predictive maintenance in industry 4.0: Overview, models, and challenges. Applied Sciences, 12(16), 8081.

. Ahmad, R., & Kamaruddin, S. (2012). An overview of time-based and condition-based maintenance in industrial application. Computers & industrial engineering, 63(1), 135-149.

. Amelia, Z., & Sushandoyo, D. Assessment of Organization Readiness in the Implementation of Change Management (Case Study: PT. IMS).

. Asadi, M., Hashemi, M., & Balakrishnan, N. (2023). An overview of some classical models and discussion of the signature‐based models of preventive maintenance. Applied Stochastic Models in Business and Industry, 39(1), 4-53.

. AVEVA. (2022). Better together: AVEVA Predictive Analytics and the AVEVA PI System maximize mining plant ROI. In WhitePaper_AVEVA_PredictiveAnalyticsforMiningandMetals_22-10.pdf. Retrieved from https://www.aveva.com/en/products/predictive-analytics/

. Bekar, E. T., Nyqvist, P., & Skoogh, A. (2020). An intelligent approach for data pre-processing and analysis in predictive maintenance with an industrial case study. Advances in Mechanical Engineering, 12(5), 1687814020919207.

. Bravo, C., Saputelli, L., Rivas, F., Pérez, A. G., Nikolaou, M., Zangl, G., ... & Nunez, G. (2014). State of the art of artificial intelligence and predictive analytics in the E&P industry: a technology survey. Spe Journal, 19(04), 547-563.

. Brintrup, A., Pak, J., Ratiney, D., Pearce, T., Wichmann, P., Woodall, P., & McFarlane, D. (2020). Supply chain data analytics for predicting supplier disruptions: a case study in complex asset manufacturing. International Journal of Production Research, 58(11), 3330-3341.

. Chinnamgari, S. K. (2019). R Machine Learning Projects: Implement supervised, unsupervised, and reinforcement learning techniques using R 3.5. Packt Publishing Ltd.

. Cho, E., Chang, T. W., & Hwang, G. (2022). Data preprocessing combination to improve the performance of quality classification in the manufacturing process. Electronics, 11(3), 477.

. Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), 8211.

. Daneshjo, N., & Kravec, M. (2015, November). System states and requirements of reactive maintenance. In Production Management and Engineering Sciences: Proceedings of the International Conference on Engineering Science and Production Management (ESPM 2015), Tatranské Matliare, High Tatras Mountains, Slovak Republic, 16th-17th April 2015 (p. 365). CRC Press.

. Daneshjo, N., & Kravec, M. (2016). System states and requirements of reactive maintenance. Production Management and Engineering Sciences, 365.

. Drakaki, M., Karnavas, Y. L., Tziafettas, I. A., Linardos, V., & Tzionas, P. (2022). Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors: State of the art survey. Journal of Industrial Engineering and Management (JIEM), 15(1), 31-57.

. Ehrlinger, L., Lettner, C., Fragner, W., Gsellmann, G., Nestelberger, S., Rauchenzauner, F., ... & Zeindl, J. (2022, August). Data Integration, Management, and Quality: From Basic Research to Industrial Application. In International Conference on Database and Expert Systems Applications (pp. 167-178). Cham: Springer International Publishing.

. Fernandes, M., Canito, A., Bolón-Canedo, V., Conceição, L., Praça, I., & Marreiros, G. (2019). Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry. International journal of information management, 46, 252-262.

. Gackowiec, P. (2019). General overview of maintenance strategies–concepts and approaches. Multidisciplinary Aspects of Production Engineering, 2(1), 126-139.

. Gapanovich, V. A., Shubinsky, I. B., Rozenberg, E. N., & Zamyshlyaev, A. M. (2015). System of adaptive management of railway transport infrastructure technical maintenance (URRAN project). Reliability: Theory & Applications, 10(2 (37)), 30-41.

. Gillespie, A. (2015, January). Condition based maintenance: Theory, methodology, & application. In Conference: Reliability and Maintainability SymposiumAt: Tarpon Springs, FL.

. Hermansa, M., Kozielski, M., Michalak, M., Szczyrba, K., Wróbel, Ł., & Sikora, M. (2021). Sensor-based predictive maintenance with reduction of false alarms—A case study in heavy industry. Sensors, 22(1), 226.

. Karim, R., Westerberg, J., Galar, D., & Kumar, U. (2016). Maintenance analytics–the new know in maintenance. IFAC-PapersOnLine, 49(28), 214-219.

. Keleko, A. T., Kamsu-Foguem, B., Ngouna, R. H., & Tongne, A. (2022). Artificial intelligence and real-time predictive maintenance in industry 4.0: a bibliometric analysis. AI and Ethics, 2(4), 553-577.

. Krumeich, J., Jacobi, S., Werth, D., & Loos, P. (2014, June). Big data analytics for predictive manufacturing control-a case study from process industry. In 2014 IEEE international congress on big data (pp. 530-537). IEEE.

. Masani, K. I., Oza, P., & Agrawal, S. (2019). Predictive maintenance and monitoring of industrial machine using machine learning. Scalable Computing: Practice and Experience, 20(4), 663-668.

. Mobley, R. K. (2002). An introduction to predictive maintenance. Elsevier.

. Monnin, M., Abichou, B., Voisin, A., & Mozzati, C. (2011, October). Fleet historical cases for predictive maintenance. In The International Conference Surveillance (Vol. 6, pp. 25-26).

. Morales, E. F., & Escalante, H. J. (2022). A brief introduction to supervised, unsupervised, and reinforcement learning. In Biosignal processing and classification using computational learning and intelligence (pp. 111-129). Academic Press.

. Nordal, H., & El‐Thalji, I. (2021). Modeling a predictive maintenance management architecture to meet industry 4.0 requirements: A case study. Systems Engineering, 24(1), 34-50.

. Para, J., Del Ser, J., Nebro, A. J., Zurutuza, U., & Herrera, F. (2019). Analyze, sense, preprocess, predict, implement, and deploy (ASPPID): An incremental methodology based on data analytics for cost-efficiently monitoring the industry 4.0. Engineering Applications of Artificial Intelligence, 82, 30-43.

. Peng, Y., Dong, M., & Zuo, M. J. (2010). Current status of machine prognostics in condition-based maintenance: a review. The International Journal of Advanced Manufacturing Technology, 50, 297-313.

. Poór, P., Ženíšek, D., & Basl, J. (2019, July). Historical overview of maintenance management strategies: Development from breakdown maintenance to predictive maintenance in accordance with four industrial revolutions. In Proceedings of the international conference on industrial engineering and operations management, Pilsen, Czech Republic (pp. 23-26).

. Quatrini, E., Costantino, F., Di Gravio, G., & Patriarca, R. (2020). Condition-based maintenance—an extensive literature review. Machines, 8(2), 31.

. Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R. (2019). A survey of predictive maintenance: Systems, purposes and approaches. arXiv preprint arXiv:1912.07383.

. Razali, M. N., Jamaluddin, A. F., Abdul Jalil, R., & Nguyen, T. K. (2020). Big data analytics for predictive maintenance in maintenance management. Property Management, 38(4), 513-529.

. Sarnovsky, M., Bednár, P., & Smatana, M. (2017, October). Data integration in scalable data analytics platform for process industries. In 2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES) (pp. 000187-000192). IEEE.

. Sang, G. M., Xu, L., De Vrieze, P., Bai, Y., & Pan, F. (2020, June). Predictive maintenance in industry 4.0. In Proceedings of the 10th International Conference on Information Systems and Technologies (pp. 1-11).

. Selcuk, S. (2017). Predictive maintenance, its implementation and latest trends. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(9), 1670-1679.

. Serradilla, O., Zugasti, E., Rodriguez, J., & Zurutuza, U. (2022). Deep learning models for predictive maintenance: a survey, comparison, challenges and prospects. Applied Intelligence, 52(10), 10934-10964.

. Siraskar, R., Kumar, S., Patil, S., Bongale, A., & Kotecha, K. (2023). Reinforcement learning for predictive maintenance: A systematic technical review. Artificial Intelligence Review, 56(11), 12885-12947.

. Terziyan, V., & Vitko, O. (2022). Explainable AI for Industry 4.0: semantic representation of deep learning models. Procedia Computer Science, 200, 216-226.

. Tiddens, W., Braaksma, J., & Tinga, T. (2022). Exploring predictive maintenance applications in industry. Journal of quality in maintenance engineering, 28(1), 68-85.

. Wen, Y., Rahman, M. F., Xu, H., & Tseng, T. L. B. (2022). Recent advances and trends of predictive maintenance from data-driven machine prognostics perspective. Measurement, 187, 110276.

. Yan, H., Wan, J., Zhang, C., Tang, S., Hua, Q., & Wang, Z. (2018). Industrial big data analytics for prediction of remaining useful life based on deep learning. IEEE access, 6, 17190-17197.

. Zhang, W., Yang, D., & Wang, H. (2019). Data-driven methods for predictive maintenance of industrial equipment: A survey. IEEE systems journal, 13(3), 2213-2227.

. Zonta, T., Da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889.


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.